Mun Jeong Choi, SeongYeon Kim, Jongho Shin, Geon Hwee Kim
{"title":"Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning","authors":"Mun Jeong Choi, SeongYeon Kim, Jongho Shin, Geon Hwee Kim","doi":"10.1021/acsami.4c17414","DOIUrl":null,"url":null,"abstract":"Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"56 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17414","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.