Splenic red pulp macrophages eliminate the liver-resistant Streptococcus pneumoniae from the blood circulation of mice

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Haoran An, Yijia Huang, Zhifeng Zhao, Kunpeng Li, Jingjing Meng, Xueting Huang, Xianbin Tian, Hongyu Zhou, Jiamin Wu, Qionghai Dai, Jing-Ren Zhang
{"title":"Splenic red pulp macrophages eliminate the liver-resistant Streptococcus pneumoniae from the blood circulation of mice","authors":"Haoran An, Yijia Huang, Zhifeng Zhao, Kunpeng Li, Jingjing Meng, Xueting Huang, Xianbin Tian, Hongyu Zhou, Jiamin Wu, Qionghai Dai, Jing-Ren Zhang","doi":"10.1126/sciadv.adq6399","DOIUrl":null,"url":null,"abstract":"Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of <jats:italic>Streptococcus pneumoniae</jats:italic> (pneumococcus), a leading human pathogen. Asplenic mice failed to control the growth of the liver-resistant pneumococci in the blood circulation. Immunologic and genetic analyses identified splenic red pulp (RP) macrophages as the major phagocytes for bacterial clearance. Furthermore, the plasma natural antibodies against the cell wall phosphocholine and the complement system were necessary for RP macrophage–mediated immunity. These findings have provided a conceptual framework for the innate defense against blood bacterial infections, a mechanistic explanation for the hyper-susceptibility of asplenic individuals to <jats:italic>S. pneumoniae</jats:italic> , and a proof of concept for developing vaccines and therapeutic antibodies against encapsulated pathogens.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"86 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq6399","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of Streptococcus pneumoniae (pneumococcus), a leading human pathogen. Asplenic mice failed to control the growth of the liver-resistant pneumococci in the blood circulation. Immunologic and genetic analyses identified splenic red pulp (RP) macrophages as the major phagocytes for bacterial clearance. Furthermore, the plasma natural antibodies against the cell wall phosphocholine and the complement system were necessary for RP macrophage–mediated immunity. These findings have provided a conceptual framework for the innate defense against blood bacterial infections, a mechanistic explanation for the hyper-susceptibility of asplenic individuals to S. pneumoniae , and a proof of concept for developing vaccines and therapeutic antibodies against encapsulated pathogens.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信