Dynamic Cycling of Ultrathin Li Metal Anode via Electrode–Electrolyte Interphase Comprising Lithiophilic Ag and Abundant LiF under Carbonate-Based Electrolyte

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jong Hun Sung, Un Hwan Lee, Jiwon Lee, Bo Yu, Muhammad Irfansyah Maulana, Seung-Tae Hong, Hyun Deog Yoo, Joonhee Kang, Jong-Sung Yu
{"title":"Dynamic Cycling of Ultrathin Li Metal Anode via Electrode–Electrolyte Interphase Comprising Lithiophilic Ag and Abundant LiF under Carbonate-Based Electrolyte","authors":"Jong Hun Sung, Un Hwan Lee, Jiwon Lee, Bo Yu, Muhammad Irfansyah Maulana, Seung-Tae Hong, Hyun Deog Yoo, Joonhee Kang, Jong-Sung Yu","doi":"10.1002/aenm.202500279","DOIUrl":null,"url":null,"abstract":"The use of ultrathin lithium (Li) metal anode in Li metal batteries (LMBs) has the potential to significantly improve the energy density in comparison to the conventional LMBs. However, they possess several challenges such as intrinsic dendrite growth and dead Li, leading to poor cyclability and coulombic efficiency (CE). In addition, the ultrathin Li metal can cause much faster degradation of performances than thicker one owing to the exhaustion of Li resource with less compensation. To address these problems, silver trifluoromethanesulfonate (AgCF<sub>3</sub>SO<sub>3</sub>, AgTFMS) is proposed as a functional electrolyte additive in carbonate-based electrolyte to buffer the dendritic Li growth and to provide enhanced cyclability. Interestingly, Ag metal derived from the AgTFMS exhibits lithiophilic properties through an alloying reaction with Li. Furthermore, the CF<sub>3</sub> functional group of AgTFMS generates a physically stable LiF-rich solid-electrolyte interphase (SEI), which further suppresses the Li dendrite growth. An LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) full-cell comprising the ultrathin Li metal anode (20 µm) with AgTFMS additive reveals an excellent capacity retention of up to 88.2% over 200 cycles, as well as outstanding rate capability under harsh practical condition. As a result, the AgTFMS additive can pave a new dimension for the design of high energy density LMBs using the ultrathin Li metal anode.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"46 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500279","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of ultrathin lithium (Li) metal anode in Li metal batteries (LMBs) has the potential to significantly improve the energy density in comparison to the conventional LMBs. However, they possess several challenges such as intrinsic dendrite growth and dead Li, leading to poor cyclability and coulombic efficiency (CE). In addition, the ultrathin Li metal can cause much faster degradation of performances than thicker one owing to the exhaustion of Li resource with less compensation. To address these problems, silver trifluoromethanesulfonate (AgCF3SO3, AgTFMS) is proposed as a functional electrolyte additive in carbonate-based electrolyte to buffer the dendritic Li growth and to provide enhanced cyclability. Interestingly, Ag metal derived from the AgTFMS exhibits lithiophilic properties through an alloying reaction with Li. Furthermore, the CF3 functional group of AgTFMS generates a physically stable LiF-rich solid-electrolyte interphase (SEI), which further suppresses the Li dendrite growth. An LiNi0.8Mn0.1Co0.1O2 (NMC811) full-cell comprising the ultrathin Li metal anode (20 µm) with AgTFMS additive reveals an excellent capacity retention of up to 88.2% over 200 cycles, as well as outstanding rate capability under harsh practical condition. As a result, the AgTFMS additive can pave a new dimension for the design of high energy density LMBs using the ultrathin Li metal anode.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信