A dual-functional paper-based analytical device for ultrasensitive detection of peanut allergen-specific IgE

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Ze-Nan Ma , Jun-Jie Ding , Xin-Qiao Shi , Ying Yuan , Meng-Tian Wang , Li-Na Yu , Xiao-Jun Wang , Peng Shen
{"title":"A dual-functional paper-based analytical device for ultrasensitive detection of peanut allergen-specific IgE","authors":"Ze-Nan Ma ,&nbsp;Jun-Jie Ding ,&nbsp;Xin-Qiao Shi ,&nbsp;Ying Yuan ,&nbsp;Meng-Tian Wang ,&nbsp;Li-Na Yu ,&nbsp;Xiao-Jun Wang ,&nbsp;Peng Shen","doi":"10.1016/j.aca.2025.343922","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Increasing attention has been caught by the allergy-related food safety issue. The rapid and sensitive diagnosing approaches are still in high demand for providing clinical reference. Paper-based analytical devices (PADs) are appealing candidates for allergy diagnosis and prediction due to their portability, stability, and operational easiness. However, the sensitivity of PADs needs to be further improved for the targets with low abundance. In addition to the complex signal amplifications, an alternative strategy that requires fewer reagents, steps, and shorter time is anticipated. (82)</div></div><div><h3>Results</h3><div>We report fluorescent PADs (FPADs) that can accumulate and detect the major peanut allergen glycoprotein <em>Arachis hypogaea</em> h2 (Ara h2)-specific IgE (sIgE). The FPADs are constructed by in-situ synthesis of blue-emissive carbon dots (BCDs) on the surface of cellulose paper, followed by the conjugation of Ara h2. After the capture of sIgE, a green-emissive carbon dots-labeled secondary anti-sIgE reporter (Ab2-GCDs) is assembled on FPADs. The detection relies on the sIgE concentration-dependent color variation of FPADs. In addition, the accumulation of sIgE is achievable by filtering the sample through FPADs, improving the assay sensitivity and efficiency. It is demonstrated that the limit of detection (LOD) is 15.7 ng/mL, evidently lower than the simple immersion-based assay (90.2 ng/mL). The excellent selectivity allows sIgE quantification in serum with high accuracy. (130)</div></div><div><h3>Significance</h3><div>By harnessing the outperforming sensing performance of the proposed FPADs, the rapid, accurate, and cost-efficient diagnosis and prediction of peanut allergy can be realized. In addition, the FPADs could serve as a universal sensing platform for varying targets by flexibly engineering the capture moieties on the surface of fluorescent paper. (50)</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1352 ","pages":"Article 343922"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025003162","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Increasing attention has been caught by the allergy-related food safety issue. The rapid and sensitive diagnosing approaches are still in high demand for providing clinical reference. Paper-based analytical devices (PADs) are appealing candidates for allergy diagnosis and prediction due to their portability, stability, and operational easiness. However, the sensitivity of PADs needs to be further improved for the targets with low abundance. In addition to the complex signal amplifications, an alternative strategy that requires fewer reagents, steps, and shorter time is anticipated. (82)

Results

We report fluorescent PADs (FPADs) that can accumulate and detect the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2)-specific IgE (sIgE). The FPADs are constructed by in-situ synthesis of blue-emissive carbon dots (BCDs) on the surface of cellulose paper, followed by the conjugation of Ara h2. After the capture of sIgE, a green-emissive carbon dots-labeled secondary anti-sIgE reporter (Ab2-GCDs) is assembled on FPADs. The detection relies on the sIgE concentration-dependent color variation of FPADs. In addition, the accumulation of sIgE is achievable by filtering the sample through FPADs, improving the assay sensitivity and efficiency. It is demonstrated that the limit of detection (LOD) is 15.7 ng/mL, evidently lower than the simple immersion-based assay (90.2 ng/mL). The excellent selectivity allows sIgE quantification in serum with high accuracy. (130)

Significance

By harnessing the outperforming sensing performance of the proposed FPADs, the rapid, accurate, and cost-efficient diagnosis and prediction of peanut allergy can be realized. In addition, the FPADs could serve as a universal sensing platform for varying targets by flexibly engineering the capture moieties on the surface of fluorescent paper. (50)

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信