Yaoxian Zheng, Haichuan Ning, Bicheng Zhao, Yuxuan Jiang, Jitian Chen, Yuexiang Wu, Du Nie, Xinling Hu, Zijian Yan, Ruijie Xie, Chenyang Shi, Naibo Lin
{"title":"Molecular Chain Interpenetration–Enabled High Interfacial Compatibility of Ionic and Electronic Conductors for Stretchable Ionic Devices","authors":"Yaoxian Zheng, Haichuan Ning, Bicheng Zhao, Yuxuan Jiang, Jitian Chen, Yuexiang Wu, Du Nie, Xinling Hu, Zijian Yan, Ruijie Xie, Chenyang Shi, Naibo Lin","doi":"10.1002/adma.202417175","DOIUrl":null,"url":null,"abstract":"Ionic devices find applications such as flexible electronics and biomedicines and function by exploiting hybrid circuits of mobile ions and electrons. However, the poor interfacial compatibility of hard electronic conductors with soft ionic conductors in ionic devices leads to low deformability, sensitivity, electromechanical responses, and stability. Herein, an interpenetrating interface between silicone-modified polyurethane/carbon nanotube electronic conductors and ionoelastomers in an ionic device using in situ polymerization is fabricated. A robust interpenetrating electronic/ionic conductor interface is realized through molecular chain entanglement and molecular forces (such as ion-dipole interactions and H-bonds), effectively enhancing the bonding strength and contact area between the components and resulting in an excellent flexibility, stability, and device performance. The electroadhesive prepared based on this strategy exhibits a superrobust shear strength of 317 kPa under a reduced voltage input of −4 V, and the diode and the transistor can undergo arbitrary deformation while maintaining the semiconductor device characteristics, including rectification and switching. In addition, electromechanical transducers exhibit sensitive electrical responses to various deformation signals. This solution to the interfacial compatibility problems of electronic and ionic conductors holds promise for the development of multifunctional ionic devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417175","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic devices find applications such as flexible electronics and biomedicines and function by exploiting hybrid circuits of mobile ions and electrons. However, the poor interfacial compatibility of hard electronic conductors with soft ionic conductors in ionic devices leads to low deformability, sensitivity, electromechanical responses, and stability. Herein, an interpenetrating interface between silicone-modified polyurethane/carbon nanotube electronic conductors and ionoelastomers in an ionic device using in situ polymerization is fabricated. A robust interpenetrating electronic/ionic conductor interface is realized through molecular chain entanglement and molecular forces (such as ion-dipole interactions and H-bonds), effectively enhancing the bonding strength and contact area between the components and resulting in an excellent flexibility, stability, and device performance. The electroadhesive prepared based on this strategy exhibits a superrobust shear strength of 317 kPa under a reduced voltage input of −4 V, and the diode and the transistor can undergo arbitrary deformation while maintaining the semiconductor device characteristics, including rectification and switching. In addition, electromechanical transducers exhibit sensitive electrical responses to various deformation signals. This solution to the interfacial compatibility problems of electronic and ionic conductors holds promise for the development of multifunctional ionic devices.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.