Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yanzeng Ge, Baoquan Liu, Daoxiong Wu, Yu Zhang, Si Tang, Haizhen Jiang, Jing Li, Hui Zhang, Xinlong Tian, Jinlin Yang
{"title":"Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries","authors":"Yanzeng Ge, Baoquan Liu, Daoxiong Wu, Yu Zhang, Si Tang, Haizhen Jiang, Jing Li, Hui Zhang, Xinlong Tian, Jinlin Yang","doi":"10.1021/acsenergylett.5c00139","DOIUrl":null,"url":null,"abstract":"Mg-based dual-ion batteries (DIBs) represent promising battery technologies for next-generation sustainable energy storage; however, their advancement is strongly hindered by sluggish Mg<sup>2+</sup> diffusion and structural instability of anode materials. Herein, fast and reversible storage of Mg<sup>2+</sup> in nonaqueous and aqueous electrolyte is shown for a layered organic crystal, 5,7,12,14-pentacenetetrone (PT). The enolization redox chemistry of PT and its weakly stacked layered structure with rich 1D molecular channels promote Mg<sup>2+</sup> storage kinetics, providing a high diffusion coefficient on the order of 10<sup>–8</sup>–10<sup>–9</sup> cm<sup>2</sup> S<sup>–1</sup>. As expected, the nonaqueous Mg-DIBs exhibit a reversible capacity of 95 mAh g<sup>–1</sup> at 0.1 A g<sup>–1</sup>, wide-temperature operating capability (−20 to 50 °C), and good cycling stability over 2000 cycles. Interestingly, the applicability of PT as Mg<sup>2+</sup>-hosting materials extends to aqueous systems, enabling the construction of high-safety aqueous Mg-DIBs. This study provides crucial insights into the structural design of organic molecular crystal for multivalent ion-based DIBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"56 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00139","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mg-based dual-ion batteries (DIBs) represent promising battery technologies for next-generation sustainable energy storage; however, their advancement is strongly hindered by sluggish Mg2+ diffusion and structural instability of anode materials. Herein, fast and reversible storage of Mg2+ in nonaqueous and aqueous electrolyte is shown for a layered organic crystal, 5,7,12,14-pentacenetetrone (PT). The enolization redox chemistry of PT and its weakly stacked layered structure with rich 1D molecular channels promote Mg2+ storage kinetics, providing a high diffusion coefficient on the order of 10–8–10–9 cm2 S–1. As expected, the nonaqueous Mg-DIBs exhibit a reversible capacity of 95 mAh g–1 at 0.1 A g–1, wide-temperature operating capability (−20 to 50 °C), and good cycling stability over 2000 cycles. Interestingly, the applicability of PT as Mg2+-hosting materials extends to aqueous systems, enabling the construction of high-safety aqueous Mg-DIBs. This study provides crucial insights into the structural design of organic molecular crystal for multivalent ion-based DIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信