Construction of La-doped BiFeO3 ferroelectric heterojunction coatings to enhance the performance of lithium-rich manganese-based cathode materials

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Cong Yin , Weida Chen , Wenhai Zhao , Mi Zhao , Zichao Huang , Sheng’an Yang , Kun Dong , Yunqi Cai , Wenzhang Wang , Kaizhao Wang , Jin Hu , Qingming Chen , Qianxu Ye , Ji Ma
{"title":"Construction of La-doped BiFeO3 ferroelectric heterojunction coatings to enhance the performance of lithium-rich manganese-based cathode materials","authors":"Cong Yin ,&nbsp;Weida Chen ,&nbsp;Wenhai Zhao ,&nbsp;Mi Zhao ,&nbsp;Zichao Huang ,&nbsp;Sheng’an Yang ,&nbsp;Kun Dong ,&nbsp;Yunqi Cai ,&nbsp;Wenzhang Wang ,&nbsp;Kaizhao Wang ,&nbsp;Jin Hu ,&nbsp;Qingming Chen ,&nbsp;Qianxu Ye ,&nbsp;Ji Ma","doi":"10.1016/j.apsusc.2025.162951","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-rich manganese-based cathodes exhibit ultra-high capacities (&gt;250mAh g<sup>−1</sup>) due to high operating voltage and multiple redox mechanisms, making them ideal for high-energy–density lithium-ion batteries. However, challenges such as oxygen loss, parasitic reactions, and structural degradation limit their practical application. To address these issues, a Bi<sub>1-</sub><em><sub>x</sub></em>La<em><sub>x</sub></em>FeO<sub>3</sub> (0 &lt; <em>x</em> ≤ 0.2) ferroelectric heterointerface layer is constructed, effectively suppressing side reactions, enhancing lattice oxygen reversibility, and preventing structural degradation. The piezoelectric effect induced by volumetric changes further promotes Li<sup>+</sup> transport and diffusion. The modified cathode achieves remarkable cycling stability, retaining 176.6mAh g<sup>−1</sup> (88.39 %) at 1C and 194.5mAh g<sup>−1</sup> at 0.5C (86.52 %) after 200 cycles, with reduced voltage decay (0.6 V to 0.4 V). Even at a high current density of 5C, a capacity of ∼ 120mAh g<sup>−1</sup> is maintained. This study provides a new design strategy for durable, high-energy–density layered oxide cathodes.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"696 ","pages":"Article 162951"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225006658","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-rich manganese-based cathodes exhibit ultra-high capacities (>250mAh g−1) due to high operating voltage and multiple redox mechanisms, making them ideal for high-energy–density lithium-ion batteries. However, challenges such as oxygen loss, parasitic reactions, and structural degradation limit their practical application. To address these issues, a Bi1-xLaxFeO3 (0 < x ≤ 0.2) ferroelectric heterointerface layer is constructed, effectively suppressing side reactions, enhancing lattice oxygen reversibility, and preventing structural degradation. The piezoelectric effect induced by volumetric changes further promotes Li+ transport and diffusion. The modified cathode achieves remarkable cycling stability, retaining 176.6mAh g−1 (88.39 %) at 1C and 194.5mAh g−1 at 0.5C (86.52 %) after 200 cycles, with reduced voltage decay (0.6 V to 0.4 V). Even at a high current density of 5C, a capacity of ∼ 120mAh g−1 is maintained. This study provides a new design strategy for durable, high-energy–density layered oxide cathodes.

Abstract Image

Abstract Image

la掺杂BiFeO3铁电异质结涂层的构建提高富锂锰基正极材料的性能
由于高工作电压和多种氧化还原机制,富锂锰基阴极具有超高容量(>250mAh g−1),使其成为高能量密度锂离子电池的理想选择。然而,诸如氧损失、寄生反应和结构降解等挑战限制了它们的实际应用。为了解决这些问题,构建了Bi1-xLaxFeO3(0 <; x ≤ 0.2)铁电异质界面层,有效抑制副反应,增强晶格氧可逆性,防止结构降解。体积变化引起的压电效应进一步促进了Li+的输运和扩散。改进后的阴极具有显著的循环稳定性,在1C下保持176.6mAh g−1(88.9 %),在0.5C下保持194.5mAh g−1(86.52 %),循环200次后电压衰减(0.6 V至0.4 V)降低。即使在5C的高电流密度下,也能保持 ~ 120mAh g−1的容量。这项研究为耐用、高能量密度的层状氧化物阴极提供了一种新的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信