Dynamics of Pulsed-Laser Interaction with Janus Particles

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alireza Khoshzaban, Alessandro Magazzú, Maria Grazia Donato, Onofrio M. Maragò, Mehmet Burcin Unlu, M. Natali Cizmeciyan, Parviz Elahi
{"title":"Dynamics of Pulsed-Laser Interaction with Janus Particles","authors":"Alireza Khoshzaban, Alessandro Magazzú, Maria Grazia Donato, Onofrio M. Maragò, Mehmet Burcin Unlu, M. Natali Cizmeciyan, Parviz Elahi","doi":"10.1021/acsphotonics.4c02388","DOIUrl":null,"url":null,"abstract":"Janus particles, with their flexible chemistry and multifunctionality, have broadened the scope of the optical manipulation field as an emerging class of materials. Laser-based manipulation is particularly promising for half-metal-coated particles, offering a platform to study optical and thermal effects. However, the role of the laser’s operation regime in particle behavior needs to be understood better. Hence, in this work, we studied the interaction of nanosecond-pulsed lasers on 4.1 μm Au-Janus particles with a 100 nm gold cap. We focused on the interaction in three sections: (1) We observed three pulse energy influence regimes: In the low-influence regime (less than ∼10 nJ), the particle maintains its intrinsic Brownian motion. In the medium-influence regime (less than ∼40 nJ), the particle exhibits an extended range of motion. In the high-influence regime (higher than ∼40 nJ), the particle undergoes superdiffusion and establishes a new equilibrium position. (2) During optical manipulation trials, a threshold pulse energy of 4 nJ (average power of 40 μW) was sufficient to move Au-Janus particles against the laser spot. We achieved translation velocities of 0.9–5.1 μm/s at 4–50 nJ. (3) The gold cap is damaged at 20 nJ (fluence of 0.7 J/cm<sup>2</sup>) when the laser is focused on the particle, consistent with theoretical predictions, and the ablation process generates micro- and submicrometer gold particles. These findings reveal the potential of pulsed lasers for precise, power-efficient manipulation of Janus particles, advancing our understanding of laser–particle interactions and opening new pathways for optical manipulation applications.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"17 1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02388","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Janus particles, with their flexible chemistry and multifunctionality, have broadened the scope of the optical manipulation field as an emerging class of materials. Laser-based manipulation is particularly promising for half-metal-coated particles, offering a platform to study optical and thermal effects. However, the role of the laser’s operation regime in particle behavior needs to be understood better. Hence, in this work, we studied the interaction of nanosecond-pulsed lasers on 4.1 μm Au-Janus particles with a 100 nm gold cap. We focused on the interaction in three sections: (1) We observed three pulse energy influence regimes: In the low-influence regime (less than ∼10 nJ), the particle maintains its intrinsic Brownian motion. In the medium-influence regime (less than ∼40 nJ), the particle exhibits an extended range of motion. In the high-influence regime (higher than ∼40 nJ), the particle undergoes superdiffusion and establishes a new equilibrium position. (2) During optical manipulation trials, a threshold pulse energy of 4 nJ (average power of 40 μW) was sufficient to move Au-Janus particles against the laser spot. We achieved translation velocities of 0.9–5.1 μm/s at 4–50 nJ. (3) The gold cap is damaged at 20 nJ (fluence of 0.7 J/cm2) when the laser is focused on the particle, consistent with theoretical predictions, and the ablation process generates micro- and submicrometer gold particles. These findings reveal the potential of pulsed lasers for precise, power-efficient manipulation of Janus particles, advancing our understanding of laser–particle interactions and opening new pathways for optical manipulation applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信