Billy FitzGerald‐Lowry, Daniel Aagren Nielsen, Rebecca Julianne Duncan, Alyson May Theseira, Georgia Thompson, Katherina Petrou
{"title":"Multi‐trait responses in two marine diatoms to pH and irradiance reveal interactive effect of light and acidification, mediated by silicification","authors":"Billy FitzGerald‐Lowry, Daniel Aagren Nielsen, Rebecca Julianne Duncan, Alyson May Theseira, Georgia Thompson, Katherina Petrou","doi":"10.1002/lno.70014","DOIUrl":null,"url":null,"abstract":"Ocean ecosystem shifts in response to anthropogenic climate change are impacting marine organisms, including phytoplankton. Ocean acidification and warming represent two key threats to marine phytoplankton, causing significant changes to the upper mixed layer of the ocean, reshuffling their distribution, and reorganizing their physiology and metabolism. In this study, we investigated changes in biomolecular composition and silicification rates of the two “model” diatom species <jats:italic>Phaeodactylum tricornutum</jats:italic> and <jats:italic>Thalassiosira weissflogii</jats:italic> under low (~ 350) and projected future (~ 800) <jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub> concentrations with low (20 <jats:italic>μ</jats:italic>mol photons m<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup>) and high (200 <jats:italic>μ</jats:italic>mol photons m<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup>) light, simulating expected climate change‐induced impacts of ocean shoaling and acidification. Specifically, our study conditions elicited changes in lipid and protein content in both species. We also found a negative effect of <jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub> on silica production under high light in <jats:italic>T. weissflogii</jats:italic> that was linked to improved photochemical efficiency. This interactive effect between light and <jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub> with silica production suggests a potential controlling role of the frustule in diatom photosynthesis and photoprotection (energy balance). Based on these data, ocean shoaling and acidification have the potential to influence the nutritional value and biogeochemical role of diatoms through its effect on diatom frustule synthesis and photobiology.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"86 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.70014","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean ecosystem shifts in response to anthropogenic climate change are impacting marine organisms, including phytoplankton. Ocean acidification and warming represent two key threats to marine phytoplankton, causing significant changes to the upper mixed layer of the ocean, reshuffling their distribution, and reorganizing their physiology and metabolism. In this study, we investigated changes in biomolecular composition and silicification rates of the two “model” diatom species Phaeodactylum tricornutum and Thalassiosira weissflogii under low (~ 350) and projected future (~ 800) pCO2 concentrations with low (20 μmol photons m−2 s−1) and high (200 μmol photons m−2 s−1) light, simulating expected climate change‐induced impacts of ocean shoaling and acidification. Specifically, our study conditions elicited changes in lipid and protein content in both species. We also found a negative effect of pCO2 on silica production under high light in T. weissflogii that was linked to improved photochemical efficiency. This interactive effect between light and pCO2 with silica production suggests a potential controlling role of the frustule in diatom photosynthesis and photoprotection (energy balance). Based on these data, ocean shoaling and acidification have the potential to influence the nutritional value and biogeochemical role of diatoms through its effect on diatom frustule synthesis and photobiology.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.