{"title":"Effects of graphite-based material size on mechanical and tribological performance of polyimides under drying sliding condition","authors":"Changxin Wan, Dan Jia, Shengpeng Zhan, Wulin Zhang, Tian Yang, Yinhua Li, Jian Li, Haitao Duan","doi":"10.26599/frict.2025.9441093","DOIUrl":null,"url":null,"abstract":"<p><strong> </strong>The present investigation evaluates the effect of graphite-based filler (GBF) size on the mechanical and tribological performance of polyimide (PI) solid lubricant composites. During dry sliding tribological experiments, micron-, nano-graphite (MG, NG), and ultrathin graphene (GN) additives were considered. The results revealed that atomic-thickness GN outperformed micron- and nano-sized GBF filler in terms of mechanical and tribological performance when added into PI matrix. It was inferred that the GN was able to generate sufficient lubricating phases at the frictional interface due to their small size and ultrathin morphology, which provided them with enhanced tribological properties in comparison with the micro and nano-sized GBF fillers. GN oxidized by reciprocating shear force and friction heat at friction interface and subsequently formed lubricating layer consisting of graphene oxide (GO), as characterized by FTIR and Raman, spectroscopy. Atomistic modeling techniques was also used to elucidate the surface/interface lubrication mechanism, where GO was tightly adsorbed at frictional interfaces by van der Waals. The results facilitate better understanding of size effect on wear mechanism for solid lubricants.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"31 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441093","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation evaluates the effect of graphite-based filler (GBF) size on the mechanical and tribological performance of polyimide (PI) solid lubricant composites. During dry sliding tribological experiments, micron-, nano-graphite (MG, NG), and ultrathin graphene (GN) additives were considered. The results revealed that atomic-thickness GN outperformed micron- and nano-sized GBF filler in terms of mechanical and tribological performance when added into PI matrix. It was inferred that the GN was able to generate sufficient lubricating phases at the frictional interface due to their small size and ultrathin morphology, which provided them with enhanced tribological properties in comparison with the micro and nano-sized GBF fillers. GN oxidized by reciprocating shear force and friction heat at friction interface and subsequently formed lubricating layer consisting of graphene oxide (GO), as characterized by FTIR and Raman, spectroscopy. Atomistic modeling techniques was also used to elucidate the surface/interface lubrication mechanism, where GO was tightly adsorbed at frictional interfaces by van der Waals. The results facilitate better understanding of size effect on wear mechanism for solid lubricants.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.