Acid-activated bentonite for solid-phase nucleic acid extraction from various pathogenic samples

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Eun Yeong Lee, Minju Lee, Myoung Gyu Kim, Chae Eun Bae, Sung-Han Kim, Yong Shin
{"title":"Acid-activated bentonite for solid-phase nucleic acid extraction from various pathogenic samples","authors":"Eun Yeong Lee, Minju Lee, Myoung Gyu Kim, Chae Eun Bae, Sung-Han Kim, Yong Shin","doi":"10.1016/j.aca.2025.343928","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Despite significant advancements in nucleic acid testing technologies, current nucleic acid extraction methods are often limited by inefficiency, complexity, and a lack of versatility. To overcome these challenges, we have developed an innovative solid-phase extraction (SPE) method employing sulfuric acid-activated bentonite (SAB) for extracting nucleic acids from various sample types.<h3>Results</h3>Activation with sulfuric acid expands the surface area of bentonite by 2.2 times, thereby enhancing its adsorption capacity and surface modification efficiency. To further improve extraction efficiency, we modified SAB through amine-functionalization using 3-aminopropyl(diethoxy)methylsilane (APDMS), resulting in the creation of APDMS-modified SAB (ASAB). This modification facilitates efficient nucleic acid binding via reversible interactions mediated by a homobifunctional imidoester (HI) reagent. Our ASAB-based SPE system offers a streamlined, universal protocol for isolating DNA, RNA, and miRNA from diverse samples, including clinical bodily fluids and culture media, in under 30 minutes. Moreover, the system effectively enriches low concentrations of negatively charged pathogens (down to 20 CFU/reaction) from large-volume samples (up to 50 mL) through a 30-minute pre-enrichment step utilizing the positively charged ASAB-HI complex. Comparative testing with pooled human urine and plasma samples revealed up to a 3.95-fold increase in DNA recovery compared to commercial SPE kits. Additionally, the system demonstrated up to a 6.3-fold improvement in the isolation of unstable viral RNA from clinical nasopharyngeal swabs, as well as critical microRNA biomarkers.<h3>Significance</h3>The versatility and high efficiency of nucleic acid recovery with our ASAB-based SPE system indicate its potential to revolutionize traditional SPE methods, positioning it as a universal nucleic acid extraction platform for molecular biology research.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"2 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343928","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Despite significant advancements in nucleic acid testing technologies, current nucleic acid extraction methods are often limited by inefficiency, complexity, and a lack of versatility. To overcome these challenges, we have developed an innovative solid-phase extraction (SPE) method employing sulfuric acid-activated bentonite (SAB) for extracting nucleic acids from various sample types.

Results

Activation with sulfuric acid expands the surface area of bentonite by 2.2 times, thereby enhancing its adsorption capacity and surface modification efficiency. To further improve extraction efficiency, we modified SAB through amine-functionalization using 3-aminopropyl(diethoxy)methylsilane (APDMS), resulting in the creation of APDMS-modified SAB (ASAB). This modification facilitates efficient nucleic acid binding via reversible interactions mediated by a homobifunctional imidoester (HI) reagent. Our ASAB-based SPE system offers a streamlined, universal protocol for isolating DNA, RNA, and miRNA from diverse samples, including clinical bodily fluids and culture media, in under 30 minutes. Moreover, the system effectively enriches low concentrations of negatively charged pathogens (down to 20 CFU/reaction) from large-volume samples (up to 50 mL) through a 30-minute pre-enrichment step utilizing the positively charged ASAB-HI complex. Comparative testing with pooled human urine and plasma samples revealed up to a 3.95-fold increase in DNA recovery compared to commercial SPE kits. Additionally, the system demonstrated up to a 6.3-fold improvement in the isolation of unstable viral RNA from clinical nasopharyngeal swabs, as well as critical microRNA biomarkers.

Significance

The versatility and high efficiency of nucleic acid recovery with our ASAB-based SPE system indicate its potential to revolutionize traditional SPE methods, positioning it as a universal nucleic acid extraction platform for molecular biology research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信