{"title":"Cosmic inflation prevents singularity formation in collapse into a Hayward black hole","authors":"Michał Bobula","doi":"10.1088/1361-6382/adbc40","DOIUrl":null,"url":null,"abstract":"We construct a (quantum mechanically) modified model for the Oppenheimer–Snyder collapse scenario where the exterior of the collapsing dust ball is a Hayward black hole spacetime and the interior is a dust Friedmann–Robertson–Walker cosmology. This interior cosmology is entirely determined by the junction conditions with the exterior black hole. It turns out to be non-singular, displaying a power-law contraction which precedes a de Sitter phase or, reversely, a power-law expansion followed by a de Sitter era. We demonstrate that cosmic inflation in the collapse setting is a mechanism that decelerates collapsing matter, thereby preventing singularity formation. We also analyse the global causal structure and the viability of the model.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"68 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adbc40","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a (quantum mechanically) modified model for the Oppenheimer–Snyder collapse scenario where the exterior of the collapsing dust ball is a Hayward black hole spacetime and the interior is a dust Friedmann–Robertson–Walker cosmology. This interior cosmology is entirely determined by the junction conditions with the exterior black hole. It turns out to be non-singular, displaying a power-law contraction which precedes a de Sitter phase or, reversely, a power-law expansion followed by a de Sitter era. We demonstrate that cosmic inflation in the collapse setting is a mechanism that decelerates collapsing matter, thereby preventing singularity formation. We also analyse the global causal structure and the viability of the model.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.