Yi Wang , Wanxin Liu , Ziwei Chen , Kaixin Zheng , Xianliang Yi , Jiao Wang , Xiaochen Chen , Xianhua Liu
{"title":"Distinct responses of Caenorhabditis elegans to polyethylene microplastics and plant secondary metabolites","authors":"Yi Wang , Wanxin Liu , Ziwei Chen , Kaixin Zheng , Xianliang Yi , Jiao Wang , Xiaochen Chen , Xianhua Liu","doi":"10.1016/j.envpol.2025.126051","DOIUrl":null,"url":null,"abstract":"<div><div>Soil worms are among the most abundant and functionally diverse soil animals. However, they have been largely overlooked in studies on microplastic (MP) toxicity. MPs and plant secondary metabolites (PSMs) are ubiquitous in soil due to plant litter decomposition and heavy MP contamination, inevitably interacting and exerting combined toxicity on soil organisms. However, little research has been conducted on their joint effects. This study investigates the individual and combined toxic effects of polyethylene (PE) MPs and three PSMs (glycyrrhizic acid, tannic acid, and matrine) on the model organism <em>Caenorhabditis elegans</em>. Physiological and biochemical responses were assessed using fluorescence microscopy, image analysis, and statistical methods. After 42 h of exposure to PE MPs and/or PSMs, worm growth and development were negatively impacted. Under experimental conditions, matrine and PE MPs synergistically inhibited worm growth, exacerbated neurological damage, and induced oxidative stress. In contrast, glycyrrhizic acid and tannic acid alleviated PE MP-induced growth inhibition, mitigated oxidative stress, and demonstrated antioxidant properties that counteracted oxidative damage. This study offers new insights into the combined effects of MPs and PSMs in soil ecosystems, contributing to ecological risk assessments and pollution management strategies.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"372 ","pages":"Article 126051"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125004245","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil worms are among the most abundant and functionally diverse soil animals. However, they have been largely overlooked in studies on microplastic (MP) toxicity. MPs and plant secondary metabolites (PSMs) are ubiquitous in soil due to plant litter decomposition and heavy MP contamination, inevitably interacting and exerting combined toxicity on soil organisms. However, little research has been conducted on their joint effects. This study investigates the individual and combined toxic effects of polyethylene (PE) MPs and three PSMs (glycyrrhizic acid, tannic acid, and matrine) on the model organism Caenorhabditis elegans. Physiological and biochemical responses were assessed using fluorescence microscopy, image analysis, and statistical methods. After 42 h of exposure to PE MPs and/or PSMs, worm growth and development were negatively impacted. Under experimental conditions, matrine and PE MPs synergistically inhibited worm growth, exacerbated neurological damage, and induced oxidative stress. In contrast, glycyrrhizic acid and tannic acid alleviated PE MP-induced growth inhibition, mitigated oxidative stress, and demonstrated antioxidant properties that counteracted oxidative damage. This study offers new insights into the combined effects of MPs and PSMs in soil ecosystems, contributing to ecological risk assessments and pollution management strategies.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.