Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.

Catarina Oliveira, Marta Vilela, João Silva Marques, Cláudia Jorge, Tiago Rodrigues, Ana Rita Francisco, Rita Marante de Oliveira, Beatriz Silva, João Lourenço Silva, Arlindo L Oliveira, Fausto J Pinto, Miguel Nobre Menezes
{"title":"Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.","authors":"Catarina Oliveira, Marta Vilela, João Silva Marques, Cláudia Jorge, Tiago Rodrigues, Ana Rita Francisco, Rita Marante de Oliveira, Beatriz Silva, João Lourenço Silva, Arlindo L Oliveira, Fausto J Pinto, Miguel Nobre Menezes","doi":"10.1007/s10554-025-03369-y","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for instantaneous wave-free Ratio (iFR). We aimed to develop binary iFR lesion classification AI models and compare them with human performance. single-center retrospective study of patients undergoing CAG and iFR. A validated encoder-decoder convolutional neural network (CNN) performed segmentation. Manual annotation of target vessel and pressure sensor location on a segmented telediastolic frame followed. Three AI models classified lesions as positive (≤ 0.89) or negative (> 0.89). Model 1 uses preprocessed vessel diameters with a transformer. Models 2/3 are EfficientNet-B5 CNNs using concatenated angiography and segmentation - Model 3 employs class-frequency-weighted Cross-Entropy Loss. Previous findings demonstrated Model 3's superiority for left anterior descending (LAD) and Model 1's for circumflex (Cx)/right coronary artery (RCA) - they were therefore unified into a vessel-based model. Ten-fold patient-level cross-validation enabled full sample training/testing. Three experienced operators performed binary iFR classification using single frames of raw/segmented images. Comparison metrics were accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Across 250 measurements, AI accuracy was 72%, PPV 48%, NPV 90%, sensitivity 77%, and specificity 71%. Human accuracy ranged from 54 to 74%. NPV was high for the Cx/RCA (AI: 96/98%; operators: 94/97%), but AI significantly outperformed humans in the LAD (78% vs. 60-64%). An AI model capable of binary iFR lesions classification mildly outperformed interventional cardiologists, supporting further validation studies.</p>","PeriodicalId":94227,"journal":{"name":"The international journal of cardiovascular imaging","volume":" ","pages":"755-771"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of cardiovascular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10554-025-03369-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for instantaneous wave-free Ratio (iFR). We aimed to develop binary iFR lesion classification AI models and compare them with human performance. single-center retrospective study of patients undergoing CAG and iFR. A validated encoder-decoder convolutional neural network (CNN) performed segmentation. Manual annotation of target vessel and pressure sensor location on a segmented telediastolic frame followed. Three AI models classified lesions as positive (≤ 0.89) or negative (> 0.89). Model 1 uses preprocessed vessel diameters with a transformer. Models 2/3 are EfficientNet-B5 CNNs using concatenated angiography and segmentation - Model 3 employs class-frequency-weighted Cross-Entropy Loss. Previous findings demonstrated Model 3's superiority for left anterior descending (LAD) and Model 1's for circumflex (Cx)/right coronary artery (RCA) - they were therefore unified into a vessel-based model. Ten-fold patient-level cross-validation enabled full sample training/testing. Three experienced operators performed binary iFR classification using single frames of raw/segmented images. Comparison metrics were accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Across 250 measurements, AI accuracy was 72%, PPV 48%, NPV 90%, sensitivity 77%, and specificity 71%. Human accuracy ranged from 54 to 74%. NPV was high for the Cx/RCA (AI: 96/98%; operators: 94/97%), but AI significantly outperformed humans in the LAD (78% vs. 60-64%). An AI model capable of binary iFR lesions classification mildly outperformed interventional cardiologists, supporting further validation studies.

利用一种新的深度学习人工智能模型无创地推导有创冠状动脉造影的瞬时自由波比,并与人工操作人员的表现进行比较。
侵入性冠状动脉生理学未得到充分利用,并且存在风险/成本。人工智能(AI)可能会实现侵入性冠状动脉造影(CAG)的非侵入性生理,可能优于人类,但很少被探索,特别是瞬时无波比(iFR)。我们的目标是开发二元iFR病变分类人工智能模型,并将其与人类的表现进行比较。CAG和iFR患者的单中心回顾性研究。一个经过验证的编码器-解码器卷积神经网络(CNN)进行分割。随后手动标注目标血管和压力传感器在分段式远舒张框架上的位置。三种AI模型将病变分为阳性(≤0.89)和阴性(> 0.89)。模型1使用带有变压器的预处理容器直径。模型2/3是使用连接血管造影和分割的EfficientNet-B5 cnn -模型3使用类频率加权交叉熵损失。先前的研究结果表明,模型3在左前降支(LAD)方面具有优势,而模型1在旋支(Cx)/右冠状动脉(RCA)方面具有优势,因此将它们统一为基于血管的模型。十倍患者水平的交叉验证使全样本训练/测试成为可能。三名经验丰富的操作员使用单帧原始/分割图像进行二进制iFR分类。比较指标为准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。在250项测量中,AI准确度为72%,PPV为48%,NPV为90%,灵敏度为77%,特异性为71%。人类的准确率在54%到74%之间。Cx/RCA的NPV高(AI: 96/98%;操作员:94/97%),但AI在LAD中的表现明显优于人类(78%对60-64%)。能够对iFR病变进行二元分类的人工智能模型的表现略优于介入心脏病专家,支持进一步的验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信