Luo Yu, Jinjiang Lai, Jun Huang, Hongying Liu, Xitian Pi
{"title":"Wireless motion control of a swimming eel-machine hybrid robot.","authors":"Luo Yu, Jinjiang Lai, Jun Huang, Hongying Liu, Xitian Pi","doi":"10.1088/1748-3190/adbeac","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leveraging the eel's inherent self-balancing and self-adaptation abilities, the robot can adapt seamlessly to complex underwater environments without the need for sophisticated controllers. Lateral line stimulation allows the robot to execute forward and backward swimming, as well as left and right curls. We graded the forward and backward swimming speed by varying the stimulus frequency and pulse width. The optimal stimulus parameters are as follows: amplitude 3.0-4.5 V, frequency 5-20 Hz, and pulse width 40-60 ms. The maximum success rates for forward and backward swimming responses to stimuli were approximately 96% and 77%, respectively. Utilizing lower pulse frequencies (5-20 Hz) and wider pulse widths (40-60 ms) facilitated sustained and efficient activation of the lateral line neural system. Electrical stimulation of the lateral line increases the eel's forward swimming speed by approximately 70%, while the electronic backpack draws only 48.1 mW of external power. Compared to bio-inspired robots, the eel-machine hybrid robot consumes 1.5 to 1100 times less external power per unit mass. The remarkable efficiency of this bio-robot enhances its performance in tasks such as underwater cave exploration.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adbeac","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leveraging the eel's inherent self-balancing and self-adaptation abilities, the robot can adapt seamlessly to complex underwater environments without the need for sophisticated controllers. Lateral line stimulation allows the robot to execute forward and backward swimming, as well as left and right curls. We graded the forward and backward swimming speed by varying the stimulus frequency and pulse width. The optimal stimulus parameters are as follows: amplitude 3.0-4.5 V, frequency 5-20 Hz, and pulse width 40-60 ms. The maximum success rates for forward and backward swimming responses to stimuli were approximately 96% and 77%, respectively. Utilizing lower pulse frequencies (5-20 Hz) and wider pulse widths (40-60 ms) facilitated sustained and efficient activation of the lateral line neural system. Electrical stimulation of the lateral line increases the eel's forward swimming speed by approximately 70%, while the electronic backpack draws only 48.1 mW of external power. Compared to bio-inspired robots, the eel-machine hybrid robot consumes 1.5 to 1100 times less external power per unit mass. The remarkable efficiency of this bio-robot enhances its performance in tasks such as underwater cave exploration.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.