Wireless motion control of a swimming eel-machine hybrid robot.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Luo Yu, Jinjiang Lai, Jun Huang, Hongying Liu, Xitian Pi
{"title":"Wireless motion control of a swimming eel-machine hybrid robot.","authors":"Luo Yu, Jinjiang Lai, Jun Huang, Hongying Liu, Xitian Pi","doi":"10.1088/1748-3190/adbeac","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leveraging the eel's inherent self-balancing and self-adaptation abilities, the robot can adapt seamlessly to complex underwater environments without the need for sophisticated controllers. Lateral line stimulation allows the robot to execute forward and backward swimming, as well as left and right curls. We graded the forward and backward swimming speed by varying the stimulus frequency and pulse width. The optimal stimulus parameters are as follows: amplitude 3.0-4.5 V, frequency 5-20 Hz, and pulse width 40-60 ms. The maximum success rates for forward and backward swimming responses to stimuli were approximately 96% and 77%, respectively. Utilizing lower pulse frequencies (5-20 Hz) and wider pulse widths (40-60 ms) facilitated sustained and efficient activation of the lateral line neural system. Electrical stimulation of the lateral line increases the eel's forward swimming speed by approximately 70%, while the electronic backpack draws only 48.1 mW of external power. Compared to bio-inspired robots, the eel-machine hybrid robot consumes 1.5 to 1100 times less external power per unit mass. The remarkable efficiency of this bio-robot enhances its performance in tasks such as underwater cave exploration.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adbeac","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leveraging the eel's inherent self-balancing and self-adaptation abilities, the robot can adapt seamlessly to complex underwater environments without the need for sophisticated controllers. Lateral line stimulation allows the robot to execute forward and backward swimming, as well as left and right curls. We graded the forward and backward swimming speed by varying the stimulus frequency and pulse width. The optimal stimulus parameters are as follows: amplitude 3.0-4.5 V, frequency 5-20 Hz, and pulse width 40-60 ms. The maximum success rates for forward and backward swimming responses to stimuli were approximately 96% and 77%, respectively. Utilizing lower pulse frequencies (5-20 Hz) and wider pulse widths (40-60 ms) facilitated sustained and efficient activation of the lateral line neural system. Electrical stimulation of the lateral line increases the eel's forward swimming speed by approximately 70%, while the electronic backpack draws only 48.1 mW of external power. Compared to bio-inspired robots, the eel-machine hybrid robot consumes 1.5 to 1100 times less external power per unit mass. The remarkable efficiency of this bio-robot enhances its performance in tasks such as underwater cave exploration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信