Qiaoxuan Wang, Junzhang Ji, Ding Huang, Changyou Gao
{"title":"Biomaterials for Modulating the Immune Microenvironment in Rheumatoid Arthritis.","authors":"Qiaoxuan Wang, Junzhang Ji, Ding Huang, Changyou Gao","doi":"10.34133/bmef.0102","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint swelling and bone destruction. Despite an incomplete understanding of its genesis, RA is tightly linked to the intricate immunological milieu, involving disruptions in molecular signaling and an imbalance between the innate and adaptive immune systems. With advancements in biomaterials science, the role of biomaterials in RA treatment has evolved from mere drug delivery systems to therapeutic microenvironment modulators, providing drug-independent treatment strategies for RA. In this review, we will delve into the immune microenvironment of RA, focusing on contributions of adaptive immunity, innate immunity, damage-associated molecular patterns (DAMPs), cytokines, and signaling pathways to disease's pathogenesis and inflammation. We provide a detailed analysis of the applications of novel nonpharmaceutical biomaterials in RA treatment, categorized into 3 key mechanisms: biofactor and signaling pathway regulation, endogenous gas adjustment, and immune cell modulation. The composition, form, therapeutic principles, and treatment efficacy of these biomaterials will be explored. The thorough discussion of these topics will offer a fresh viewpoint on RA treatment strategies and guide future research directions.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0102"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint swelling and bone destruction. Despite an incomplete understanding of its genesis, RA is tightly linked to the intricate immunological milieu, involving disruptions in molecular signaling and an imbalance between the innate and adaptive immune systems. With advancements in biomaterials science, the role of biomaterials in RA treatment has evolved from mere drug delivery systems to therapeutic microenvironment modulators, providing drug-independent treatment strategies for RA. In this review, we will delve into the immune microenvironment of RA, focusing on contributions of adaptive immunity, innate immunity, damage-associated molecular patterns (DAMPs), cytokines, and signaling pathways to disease's pathogenesis and inflammation. We provide a detailed analysis of the applications of novel nonpharmaceutical biomaterials in RA treatment, categorized into 3 key mechanisms: biofactor and signaling pathway regulation, endogenous gas adjustment, and immune cell modulation. The composition, form, therapeutic principles, and treatment efficacy of these biomaterials will be explored. The thorough discussion of these topics will offer a fresh viewpoint on RA treatment strategies and guide future research directions.