Treatment response variations to a single large bolus of enteral cholecalciferol in vitamin D deficient critically Ill children: Metabolomic insights for precision nutrition
{"title":"Treatment response variations to a single large bolus of enteral cholecalciferol in vitamin D deficient critically Ill children: Metabolomic insights for precision nutrition","authors":"Erick Helmeczi , Haley Pandya , Katie O’Hearn , Dayre McNally , Philip Britz-McKibbin","doi":"10.1016/j.jsbmb.2025.106720","DOIUrl":null,"url":null,"abstract":"<div><div>Vitamin D deficiency (VDD) is prevalent globally and in pediatric intensive care units, where it represents a modifiable risk factor that may impact patient recovery during hospitalization. Herein, we performed a retrospective analysis of serum samples from a phase-II randomized placebo-controlled trial involving a single large bolus of 10,000 IU/kg vitamin D3 ingested by critically ill children with VDD (25-OH-D < 50 nmol/L). Targeted and untargeted methods were used to comprehensively measure 6 vitamin D metabolites, 239 lipids, 68 polar metabolites, and 4 electrolytes using a multi-step data workflow for compound authentication. Complementary statistical methods classified circulating metabolites/lipids associated with vitamin D repletion following high-dose vitamin D3 intake (n = 20) versus placebo (n = 11) comprising an optional standard of care maintenance dose (< 1000 IU/day). There was a striking increase in median serum concentrations of 25-OH-D3 (4.7-fold), 3-<em>epi</em>-25-OH-D3 (24-fold) and their C3-epimer ratio (6.7-fold) in treated patients on day 3, whereas serum vitamin D3 peaked on day 1 (128-fold) unlike placebo. Treatment response differences were attributed to D3 bioavailability and C3-epimerase activity without evidence of hypercalcemia. For the first time, we report the detection of circulating 3-<em>epi</em>-D3 that was strongly correlated with vitamin D3 uptake (<em>r</em> = 0.898). Metabolomic studies revealed that vitamin D sufficiency (serum 25-OH-D >75 nmol/L) coincided with lower circulating levels of 3-methylhistidine, cystine, <em>S</em>-methylcysteine, uric acid, and two lysophosphatidylcholines 7 days after treatment. Rapid correction of VDD was associated with indicators of lower oxidative stress, inflammation, and muscle protein turn-over that may contribute clinical benefits in high-risk critically ill children.</div></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"250 ","pages":"Article 106720"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076025000482","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin D deficiency (VDD) is prevalent globally and in pediatric intensive care units, where it represents a modifiable risk factor that may impact patient recovery during hospitalization. Herein, we performed a retrospective analysis of serum samples from a phase-II randomized placebo-controlled trial involving a single large bolus of 10,000 IU/kg vitamin D3 ingested by critically ill children with VDD (25-OH-D < 50 nmol/L). Targeted and untargeted methods were used to comprehensively measure 6 vitamin D metabolites, 239 lipids, 68 polar metabolites, and 4 electrolytes using a multi-step data workflow for compound authentication. Complementary statistical methods classified circulating metabolites/lipids associated with vitamin D repletion following high-dose vitamin D3 intake (n = 20) versus placebo (n = 11) comprising an optional standard of care maintenance dose (< 1000 IU/day). There was a striking increase in median serum concentrations of 25-OH-D3 (4.7-fold), 3-epi-25-OH-D3 (24-fold) and their C3-epimer ratio (6.7-fold) in treated patients on day 3, whereas serum vitamin D3 peaked on day 1 (128-fold) unlike placebo. Treatment response differences were attributed to D3 bioavailability and C3-epimerase activity without evidence of hypercalcemia. For the first time, we report the detection of circulating 3-epi-D3 that was strongly correlated with vitamin D3 uptake (r = 0.898). Metabolomic studies revealed that vitamin D sufficiency (serum 25-OH-D >75 nmol/L) coincided with lower circulating levels of 3-methylhistidine, cystine, S-methylcysteine, uric acid, and two lysophosphatidylcholines 7 days after treatment. Rapid correction of VDD was associated with indicators of lower oxidative stress, inflammation, and muscle protein turn-over that may contribute clinical benefits in high-risk critically ill children.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.