Global dynamics of a fractional order SIRS epidemic model by the way of generalized continuous time random walk.

IF 2.3 4区 数学 Q2 BIOLOGY
Zhaohua Wu, Yongli Cai, Zhiming Wang, Daihai He, Weiming Wang
{"title":"Global dynamics of a fractional order SIRS epidemic model by the way of generalized continuous time random walk.","authors":"Zhaohua Wu, Yongli Cai, Zhiming Wang, Daihai He, Weiming Wang","doi":"10.1007/s00285-025-02201-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a novel fractional-order SIRS (frSIRS) model incorporating infection forces under intervention strategies, developed through the framework of generalized continuous-time random walks. The model is first transformed into a system of Volterra integral equations to identify the disease-free equilibrium (DFE) state and the endemic equilibrium (EE) state. Additionally, we introduce a new <math><mrow><mi>F</mi> <msup><mi>V</mi> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </math> method for calculating the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> . Through several examples, we demonstrate the broad applicability of this <math><mrow><mi>F</mi> <msup><mi>V</mi> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </math> method in determining <math><msub><mi>R</mi> <mn>0</mn></msub> </math> for fractional-order epidemic models. Next, we establish that <math><msub><mi>R</mi> <mn>0</mn></msub> </math> serves as a critical threshold governing the model's dynamics: if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo><</mo> <mn>1</mn></mrow> </math> , the unique DFE is globally asymptotically stable; while if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , the unique EE is globally asymptotically stable. Furthermore, we apply our findings to two fractional-order SIRS (frSIRS) models incorporating infection forces under various intervention strategies, thereby substantiating our results. From an epidemiological perspective, our analysis reveals several key insights for controlling disease spread: (i) when the death rate is high, it is essential to increase the memory index; (ii) when the recovery rate is high, decreasing the memory index is advisable; and (iii) enhancing psychological or inhibitory effects-factors independent of the death rate, recovery rate, or memory index-can also play a critical role in mitigating disease transmission. These findings offer valuable insights into how the memory index influences disease outbreaks and the overall severity of epidemics.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 4","pages":"39"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02201-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel fractional-order SIRS (frSIRS) model incorporating infection forces under intervention strategies, developed through the framework of generalized continuous-time random walks. The model is first transformed into a system of Volterra integral equations to identify the disease-free equilibrium (DFE) state and the endemic equilibrium (EE) state. Additionally, we introduce a new F V - 1 method for calculating the basic reproduction number R 0 . Through several examples, we demonstrate the broad applicability of this F V - 1 method in determining R 0 for fractional-order epidemic models. Next, we establish that R 0 serves as a critical threshold governing the model's dynamics: if R 0 < 1 , the unique DFE is globally asymptotically stable; while if R 0 > 1 , the unique EE is globally asymptotically stable. Furthermore, we apply our findings to two fractional-order SIRS (frSIRS) models incorporating infection forces under various intervention strategies, thereby substantiating our results. From an epidemiological perspective, our analysis reveals several key insights for controlling disease spread: (i) when the death rate is high, it is essential to increase the memory index; (ii) when the recovery rate is high, decreasing the memory index is advisable; and (iii) enhancing psychological or inhibitory effects-factors independent of the death rate, recovery rate, or memory index-can also play a critical role in mitigating disease transmission. These findings offer valuable insights into how the memory index influences disease outbreaks and the overall severity of epidemics.

用广义连续时间随机漫步方法求解分数阶SIRS流行病模型的全局动力学。
在本文中,我们提出了一种新的分数阶SIRS (frSIRS)模型,该模型通过广义连续时间随机漫步的框架开发,将感染力纳入干预策略。首先将模型转化为Volterra积分方程组,确定无病平衡(DFE)状态和地方病平衡(EE)状态。此外,我们还介绍了一种计算基本繁殖数r0的新方法fv - 1。通过几个例子,我们证明了这种fv - 1方法在确定分数阶流行病模型的r0方面的广泛适用性。接下来,我们建立了r0作为控制模型动力学的临界阈值:如果r0 1,唯一DFE是全局渐近稳定的;而当r0 bb0 1时,唯一EE是全局渐近稳定的。此外,我们将我们的发现应用于两个分数阶SIRS (frSIRS)模型,该模型包含了各种干预策略下的感染力,从而证实了我们的结果。从流行病学的角度来看,我们的分析揭示了控制疾病传播的几个关键见解:(i)当死亡率很高时,必须增加记忆指数;(ii)当恢复率较高时,宜降低记忆指数;(iii)增强心理或抑制效应——与死亡率、康复率或记忆指数无关的因素——也可以在减轻疾病传播方面发挥关键作用。这些发现为记忆指数如何影响疾病爆发和流行病的整体严重程度提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信