Richard Taschereau, Arion F Chatziioannou, Shili Xu
{"title":"Retrospective Cardiac Gating with A Prototype Small-Animal X-ray Computed Tomograph.","authors":"Richard Taschereau, Arion F Chatziioannou, Shili Xu","doi":"10.3791/67803","DOIUrl":null,"url":null,"abstract":"<p><p>The CrumpCAT is a prototype small-animal X-ray computed tomography (CT) scanner developed at our research institution. The CMOS detector with a maximum frame rate of 29 Hz and similar Tungsten X-ray sources with energies ranging from 50 kVp to 80 kVp are widely used across commercially available preclinical X-ray CT instruments. This makes the described work highly relevant to other institutions, despite the generally perceived wisdom that these detectors are not suitable for gating the high heart rates of mice (~600 beats/min). The scanner features medium- (200 µm) and high- (125 µm) resolution imaging, fluoroscopy, retrospective respiratory gating, and retrospective cardiac gating, with iterative or filtered-back projection image reconstruction. Among these features, cardiac gating is the most useful feature for studying cardiac functions in vivo, as it effectively eliminates image blurring caused by respiratory and cardiac motion. Here, we describe our method for preclinical intrinsic retrospective cardiac-gated CT imaging, aimed at advancing research on in vivo cardiac function and structure analysis. The cardiac-gating method acquires a large number of projections at the shortest practical exposure time (~20 ms) and then retrospectively extracts respiratory and cardiac signals from temporal changes in raw projection sequences. These signals are used to reject projections belonging to the high motion rate inspiration phase of the respiratory cycle and to divide the remaining projections into 12 groups, each corresponding to one phase of the cardiac cycle. Each group is reconstructed independently using an iterative method to produce a volumetric image for each cardiac phase, resulting in a four-dimensional (4D) dataset. These phase images can be analyzed either collectively or individually, allowing for detailed assessment of cardiac function. We demonstrated the effectiveness of both approaches of the prototype scanner's cardiac-gating feature through representative in vivo imaging results.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67803","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The CrumpCAT is a prototype small-animal X-ray computed tomography (CT) scanner developed at our research institution. The CMOS detector with a maximum frame rate of 29 Hz and similar Tungsten X-ray sources with energies ranging from 50 kVp to 80 kVp are widely used across commercially available preclinical X-ray CT instruments. This makes the described work highly relevant to other institutions, despite the generally perceived wisdom that these detectors are not suitable for gating the high heart rates of mice (~600 beats/min). The scanner features medium- (200 µm) and high- (125 µm) resolution imaging, fluoroscopy, retrospective respiratory gating, and retrospective cardiac gating, with iterative or filtered-back projection image reconstruction. Among these features, cardiac gating is the most useful feature for studying cardiac functions in vivo, as it effectively eliminates image blurring caused by respiratory and cardiac motion. Here, we describe our method for preclinical intrinsic retrospective cardiac-gated CT imaging, aimed at advancing research on in vivo cardiac function and structure analysis. The cardiac-gating method acquires a large number of projections at the shortest practical exposure time (~20 ms) and then retrospectively extracts respiratory and cardiac signals from temporal changes in raw projection sequences. These signals are used to reject projections belonging to the high motion rate inspiration phase of the respiratory cycle and to divide the remaining projections into 12 groups, each corresponding to one phase of the cardiac cycle. Each group is reconstructed independently using an iterative method to produce a volumetric image for each cardiac phase, resulting in a four-dimensional (4D) dataset. These phase images can be analyzed either collectively or individually, allowing for detailed assessment of cardiac function. We demonstrated the effectiveness of both approaches of the prototype scanner's cardiac-gating feature through representative in vivo imaging results.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.