{"title":"Comparison of the establishment of a rabbit model of carpal tunnel syndrome under ultrasound-guided and landmark-guided methods.","authors":"Qiao-Yin Zhou, Tian-Hua Li, Jing-Yuan Zeng, Dan-Tong Wu, Yun-Nan Li, Qian Chen, Shi-Liang Li","doi":"10.1038/s41598-025-93429-z","DOIUrl":null,"url":null,"abstract":"<p><p>A simple and feasible rabbit model of carpal tunnel syndrome (CTS) was established using an animal experimental study. Twenty-four New Zealand white rabbits were randomized into a normal group (Group C), a glucose injection model group (Groups N-M) and an ultrasound-guided injection model group (Groups U-M). Each group consisted of 8 rabbits.Electrophysiological and ultrasound examinations were performed before sampling. Hematoxylin-eosin (H&E) staining and electron microscopy were performed to observe the neuropathological changes. During electrophysiological testing 1 week after modeling, the amplitudes of the sensory nerve conduction velocity (SNCV), distal motor latency (DML) and compound muscle action potential (CMAP ) in the U-M group were significantly different compared to the C group and the N-M group (P < 0.05). Five weeks after modeling, the amplitudes of the SNCV, DML and CMAP in the U-M group and the C group were significantly different (P < 0.05). These differences were statistically significant compared to the DML and CMAP in the N-M group (P < 0.05), and the changes in these parameters were more significant than the results 1 week after modeling (P < 0.05). The difference in CMAP amplitude between the N-M group and C group was statistically significant (P < 0.05), but the other parameters were not significantly different (P > 0.05). Compared to the original modeling method, four injections of 0.3 ml of 10% glucose solution under ultrasound guidance reduced the time required to establish the disease model and increased the stability of the model. Therefore, this technique is a simple and feasible method for establishing a model of rabbit carpal tunnel syndrome.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8186"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93429-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A simple and feasible rabbit model of carpal tunnel syndrome (CTS) was established using an animal experimental study. Twenty-four New Zealand white rabbits were randomized into a normal group (Group C), a glucose injection model group (Groups N-M) and an ultrasound-guided injection model group (Groups U-M). Each group consisted of 8 rabbits.Electrophysiological and ultrasound examinations were performed before sampling. Hematoxylin-eosin (H&E) staining and electron microscopy were performed to observe the neuropathological changes. During electrophysiological testing 1 week after modeling, the amplitudes of the sensory nerve conduction velocity (SNCV), distal motor latency (DML) and compound muscle action potential (CMAP ) in the U-M group were significantly different compared to the C group and the N-M group (P < 0.05). Five weeks after modeling, the amplitudes of the SNCV, DML and CMAP in the U-M group and the C group were significantly different (P < 0.05). These differences were statistically significant compared to the DML and CMAP in the N-M group (P < 0.05), and the changes in these parameters were more significant than the results 1 week after modeling (P < 0.05). The difference in CMAP amplitude between the N-M group and C group was statistically significant (P < 0.05), but the other parameters were not significantly different (P > 0.05). Compared to the original modeling method, four injections of 0.3 ml of 10% glucose solution under ultrasound guidance reduced the time required to establish the disease model and increased the stability of the model. Therefore, this technique is a simple and feasible method for establishing a model of rabbit carpal tunnel syndrome.
采用动物实验方法建立了一种简单可行的兔腕管综合征(CTS)模型。将24只新西兰大白兔随机分为正常组(C组)、葡萄糖注射模型组(N-M组)和超声引导注射模型组(U-M组)。每组8只。取样前进行电生理和超声检查。采用苏木精-伊红(H&E)染色及电镜观察神经病理变化。造模后1周进行电生理测试,U-M组感觉神经传导速度(SNCV)、远端运动潜伏期(DML)和复合肌肉动作电位(CMAP)波幅与C组和N-M组比较差异有统计学意义(P < 0.05)。与原建模方法相比,超声引导下4次注射0.3 ml 10%葡萄糖溶液,减少了建立疾病模型所需的时间,增加了模型的稳定性。因此,该技术是建立兔腕管综合征模型的一种简单可行的方法。
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.