{"title":"Metagenomic insights of microbial functions under conventional and conservation agriculture.","authors":"Samrendra Singh Thakur, Stefany Solano González, Prashanth Suravajhala, Subodh Kumar Jain, Shweta Yadav, Karthik Sankar Narayan, Edwinraj Esack, Yakov Kuzyakov, Anisa Ratnasari","doi":"10.1007/s11274-025-04312-y","DOIUrl":null,"url":null,"abstract":"<p><p>Agricultural practices such as conventional (CN) and conservation agriculture (CA) influence the composition and structure of soil microorganisms. We used short reads and genome-resolved metagenomic-based dual sequencing approaches to create a profile of bacterial and archaeal communities in hyperthermic Typic Haplustepts soil after seven years of CA and CN. The most differences in the physico-chemical and biological properties of soil were higher pH, organics carbon, available nitrogen and microbial biomass contents, activities of dehydrogenase, β-glucosidase, and arylsulfatase, found in CA soil. The dominant bacterial taxa under both management types were Pseudomonadota (46-48%), Acidobacteriota (12-13%), Planctomycetota (8-10%), Bacteroidota (7-8%), and Actinomycetota (6-7%). Nitrososphaerota (1.1-1.5%) was the predominant archaeal phyla in CA and CN soils. The alpha diversity was 1.5 times higher in CA compared to CN soils. Fourteen high-quality (HQ) metagenomic-assembled genomes (MAGs) were recovered from both groups. Four HQ metagenome-assembled genomes (MAGs) from the Pseudomonadota phylum were exclusively recovered from the CA soil. The dominance of this phylum in the CA soil might be correlated with its nutrient richness, as certain classes of Pseudomonadota, such as Alpha, Beta-, Gamma-, and Deltaproteobacteria, are known to be copiotrophic. Copiotrophic organisms thrive in nutrient-rich environments, which could explain their prevalence in the CA soil. CAZyme gene analysis showed that Glycoside Hydrolases (GH) and GlycosylTransferases (GT) classes are dominant in the CA group, possibly due to higher substrate availability from the application of crop residues, which provide a rich source of complex carbohydrates. Several biogeochemical gene families related to C1 compounds, hydrogen, oxygen, and sulfur metabolism were enriched in CA soils, suggesting these practices may contribute to a soil environment with increased organic matter content, microbial diversity, and nutrient availability. Overall, CA practices seemed to improve soil health by supporting soil microbial communities abundance.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"100"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04312-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural practices such as conventional (CN) and conservation agriculture (CA) influence the composition and structure of soil microorganisms. We used short reads and genome-resolved metagenomic-based dual sequencing approaches to create a profile of bacterial and archaeal communities in hyperthermic Typic Haplustepts soil after seven years of CA and CN. The most differences in the physico-chemical and biological properties of soil were higher pH, organics carbon, available nitrogen and microbial biomass contents, activities of dehydrogenase, β-glucosidase, and arylsulfatase, found in CA soil. The dominant bacterial taxa under both management types were Pseudomonadota (46-48%), Acidobacteriota (12-13%), Planctomycetota (8-10%), Bacteroidota (7-8%), and Actinomycetota (6-7%). Nitrososphaerota (1.1-1.5%) was the predominant archaeal phyla in CA and CN soils. The alpha diversity was 1.5 times higher in CA compared to CN soils. Fourteen high-quality (HQ) metagenomic-assembled genomes (MAGs) were recovered from both groups. Four HQ metagenome-assembled genomes (MAGs) from the Pseudomonadota phylum were exclusively recovered from the CA soil. The dominance of this phylum in the CA soil might be correlated with its nutrient richness, as certain classes of Pseudomonadota, such as Alpha, Beta-, Gamma-, and Deltaproteobacteria, are known to be copiotrophic. Copiotrophic organisms thrive in nutrient-rich environments, which could explain their prevalence in the CA soil. CAZyme gene analysis showed that Glycoside Hydrolases (GH) and GlycosylTransferases (GT) classes are dominant in the CA group, possibly due to higher substrate availability from the application of crop residues, which provide a rich source of complex carbohydrates. Several biogeochemical gene families related to C1 compounds, hydrogen, oxygen, and sulfur metabolism were enriched in CA soils, suggesting these practices may contribute to a soil environment with increased organic matter content, microbial diversity, and nutrient availability. Overall, CA practices seemed to improve soil health by supporting soil microbial communities abundance.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.