Establishment of a novel experimental animal model for the treatment of tibial segmental bone defects in juvenile sheep.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sheng Sun, Hanwen Zhang, Qiang Wang, Danjiang Zhu, Yuwei Wen
{"title":"Establishment of a novel experimental animal model for the treatment of tibial segmental bone defects in juvenile sheep.","authors":"Sheng Sun, Hanwen Zhang, Qiang Wang, Danjiang Zhu, Yuwei Wen","doi":"10.1038/s41598-025-93172-5","DOIUrl":null,"url":null,"abstract":"<p><p>Segmental long bone defects present a significant clinical challenge as critical-size defects cannot heal spontaneously. Most studies focus on adult bone defects, with limited research on pediatric cases. To enhance the study of bone defects in children, we established a juvenile sheep bone defect model. Juvenile small-tailed Han sheep were used to create a 2 cm tibial bone defect, stabilized with a plate and screws. Tissue-engineered bone scaffolds were implanted at the defect site, and the limb was immobilized with a plaster cast for 3 months. Sheep were euthanized at 3 and 6 months post-surgery, and tibiae were examined using X-ray, microCT, and histological staining. Tibial defect models were established in 7 sheep, with 2 euthanized at 3 months and 5 at 6 months. X-ray revealed cortical bridging. MicroCT and histological staining showed new bone distribution, with the 6-month group demonstrating increased bone formation and bridging at the scaffold center. There was no significant difference in longitudinal growth rates between the operated and contralateral tibiae. We developed a reproducible model for juvenile tibial segmental defects in sheep, providing a robust basis for studying pediatric long bone segmental defects.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8232"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93172-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Segmental long bone defects present a significant clinical challenge as critical-size defects cannot heal spontaneously. Most studies focus on adult bone defects, with limited research on pediatric cases. To enhance the study of bone defects in children, we established a juvenile sheep bone defect model. Juvenile small-tailed Han sheep were used to create a 2 cm tibial bone defect, stabilized with a plate and screws. Tissue-engineered bone scaffolds were implanted at the defect site, and the limb was immobilized with a plaster cast for 3 months. Sheep were euthanized at 3 and 6 months post-surgery, and tibiae were examined using X-ray, microCT, and histological staining. Tibial defect models were established in 7 sheep, with 2 euthanized at 3 months and 5 at 6 months. X-ray revealed cortical bridging. MicroCT and histological staining showed new bone distribution, with the 6-month group demonstrating increased bone formation and bridging at the scaffold center. There was no significant difference in longitudinal growth rates between the operated and contralateral tibiae. We developed a reproducible model for juvenile tibial segmental defects in sheep, providing a robust basis for studying pediatric long bone segmental defects.

Abstract Image

Abstract Image

Abstract Image

一种治疗幼年羊胫骨节段骨缺损的新型实验动物模型的建立。
节段性长骨缺损是一个重要的临床挑战,因为临界尺寸的缺损不能自发愈合。大多数研究集中于成人骨缺损,对儿童病例的研究有限。为了加强对儿童骨缺损的研究,我们建立了幼年羊骨缺损模型。用小尾寒羊幼羊制造2厘米胫骨缺损,用钢板和螺钉固定。在缺损部位植入组织工程骨支架,用石膏固定肢体3个月。分别于术后3个月和6个月对绵羊实施安乐死,并对胫骨进行x线、显微ct和组织学染色检查。7只羊建立胫骨缺损模型,3月龄2只,6月龄5只。x线显示皮质桥接。显微ct和组织学染色显示新骨分布,6个月组显示支架中心骨形成和桥接增加。手术胫骨与对侧胫骨的纵向生长率无显著差异。我们建立了绵羊幼年胫骨节段缺损的可重复性模型,为小儿长骨节段缺损的研究提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信