{"title":"DWTFormer: a frequency-spatial features fusion model for tomato leaf disease identification.","authors":"Yuyun Xiang, Shuang Gao, Xiaopeng Li, Shuqin Li","doi":"10.1186/s13007-025-01349-w","DOIUrl":null,"url":null,"abstract":"<p><p>Remarkable inter-class similarity and intra-class variability of tomato leaf diseases seriously affect the accuracy of identification models. A novel tomato leaf disease identification model, DWTFormer, based on frequency-spatial feature fusion, was proposed to address this issue. Firstly, a Bneck-DSM module was designed to extract shallow features, laying the groundwork for deep feature extraction. Then, a dual-branch feature mapping network (DFMM) was proposed to extract multi-scale disease features from frequency and spatial domain information. In the frequency branch, a 2D discrete wavelet transform feature decomposition module effectively captured the rich frequency information in the disease image, compensating for spatial domain information. In the spatial branch, a multi-scale convolution and PVT (Pyramid Vision Transformer)-based module was developed to extract the global and local spatial features, enabling comprehensive spatial representation. Finally, a dual-domain features fusion model based on dynamic cross-attention was proposed to fuse the frequency-spatial features. Experimental results on the tomato leaf disease dataset demonstrated that DWTFormer achieved 99.28% identification accuracy, outperforming most existing mainstream models. Furthermore, 96.18% and 99.89% identification accuracies have been obtained on the AI Challenger 2018 and PlantVillage datasets. In-field experiments demonstrated that DWTFormer achieved an identification accuracy of 97.22% and an average inference time of 0.028 seconds in real plant environments. This work has effectively reduced the impact of inter-class similarity and intra-class variability on tomato leaf disease identification. It provides a scalable model reference for fast and accurate disease identification.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"33"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01349-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Remarkable inter-class similarity and intra-class variability of tomato leaf diseases seriously affect the accuracy of identification models. A novel tomato leaf disease identification model, DWTFormer, based on frequency-spatial feature fusion, was proposed to address this issue. Firstly, a Bneck-DSM module was designed to extract shallow features, laying the groundwork for deep feature extraction. Then, a dual-branch feature mapping network (DFMM) was proposed to extract multi-scale disease features from frequency and spatial domain information. In the frequency branch, a 2D discrete wavelet transform feature decomposition module effectively captured the rich frequency information in the disease image, compensating for spatial domain information. In the spatial branch, a multi-scale convolution and PVT (Pyramid Vision Transformer)-based module was developed to extract the global and local spatial features, enabling comprehensive spatial representation. Finally, a dual-domain features fusion model based on dynamic cross-attention was proposed to fuse the frequency-spatial features. Experimental results on the tomato leaf disease dataset demonstrated that DWTFormer achieved 99.28% identification accuracy, outperforming most existing mainstream models. Furthermore, 96.18% and 99.89% identification accuracies have been obtained on the AI Challenger 2018 and PlantVillage datasets. In-field experiments demonstrated that DWTFormer achieved an identification accuracy of 97.22% and an average inference time of 0.028 seconds in real plant environments. This work has effectively reduced the impact of inter-class similarity and intra-class variability on tomato leaf disease identification. It provides a scalable model reference for fast and accurate disease identification.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.