Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Yifan Xiao, Liyan Hao, Xinyi Cao, Yibo Zhang, Qingqing Xu, Luyao Qin, Yixuan Zhang, Yangxingzi Wu, Hongyan Zhou, Mengjuan Wu, Mingshan Pi, Qi Xiong, Youhua Yang, Yuran Gui, Wei Liu, Fang Zheng, Xiji Shu, Yiyuan Xia
{"title":"Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.","authors":"Yifan Xiao, Liyan Hao, Xinyi Cao, Yibo Zhang, Qingqing Xu, Luyao Qin, Yixuan Zhang, Yangxingzi Wu, Hongyan Zhou, Mengjuan Wu, Mingshan Pi, Qi Xiong, Youhua Yang, Yuran Gui, Wei Liu, Fang Zheng, Xiji Shu, Yiyuan Xia","doi":"10.1007/s12264-025-01374-8","DOIUrl":null,"url":null,"abstract":"<p><p>High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01374-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.

实验性自身免疫性脑脊髓炎中P300/ cbp相关因子介导的乙酰化介导的白细胞介素-33敲除促进星形胶质细胞高迁移率的Group Box 1释放
高移动性组框1 (HMGB1)在细胞外释放时,在脊髓突触的发育中起关键作用,并加剧中枢神经系统内的自身免疫性疾病。在实验性自身免疫性脑脊髓炎(EAE)中,一种模拟多发性硬化的疾病,细胞外HMGB1和白细胞介素-33 (IL-33)的水平被发现呈负相关。然而,IL-33缺乏促进EAE期间HMGB1释放的机制尚不清楚。我们的研究阐明了一个潜在的信号通路,即IL-33缺失导致星形胶质细胞核中P300/ cbp相关因子与HMGB1结合增加,上调HMGB1乙酰化并促进其从EAE小鼠脊髓星形胶质细胞核中释放。相反,IL-33的加入抵消了TNF-α-诱导的原代星形胶质细胞中HMGB1和乙酰化HMGB1水平的升高。这些发现强调了il -33相关信号通路作为EAE治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信