Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.
{"title":"Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.","authors":"Yifan Xiao, Liyan Hao, Xinyi Cao, Yibo Zhang, Qingqing Xu, Luyao Qin, Yixuan Zhang, Yangxingzi Wu, Hongyan Zhou, Mengjuan Wu, Mingshan Pi, Qi Xiong, Youhua Yang, Yuran Gui, Wei Liu, Fang Zheng, Xiji Shu, Yiyuan Xia","doi":"10.1007/s12264-025-01374-8","DOIUrl":null,"url":null,"abstract":"<p><p>High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01374-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.