Longitudinal high-density cortical auditory event-related potentials and speech-sound discrimination in the first two years of life in extremely and very preterm infants without developmental disorders

IF 4.7 2区 医学 Q1 NEUROIMAGING
Karine Pelc , Aleksandra Gajewska , Natan Napiórkowski , Jonathan Dan , Caroline Verhoeven , Bernard Dan
{"title":"Longitudinal high-density cortical auditory event-related potentials and speech-sound discrimination in the first two years of life in extremely and very preterm infants without developmental disorders","authors":"Karine Pelc ,&nbsp;Aleksandra Gajewska ,&nbsp;Natan Napiórkowski ,&nbsp;Jonathan Dan ,&nbsp;Caroline Verhoeven ,&nbsp;Bernard Dan","doi":"10.1016/j.neuroimage.2025.121115","DOIUrl":null,"url":null,"abstract":"<div><div>Maturation of the auditory system in early childhood significantly influences the development of language-related perceptual and cognitive abilities. This study aims to provide insights into the neurophysiological changes underlying auditory processing and speech-sound discrimination in the first two years of life. We conducted a study using high-density electroencephalography (EEG) to longitudinally record cortical auditory event-related potentials (CAEP) in response to synthesized syllable sounds with pitch/duration change in a cohort of 79 extremely and very preterm-born infants without developmental disorders. EEG were recorded at 6 timepoints from term to 24 months corrected age, using a pseudorandom oddball paradigm. We found that the infant-P1 component of CAEP showed decreasing latency with age and more focalized cortical source stabilizing in the left primary auditory cortex by 6 months. By 6 months, a negative infant-N1 component emerged, its amplitude increasing with age and source localization showing increasing distribution over the left temporal, parietal and frontal lobes. Mismatch responses demonstrated significant differences in auditory discrimination capabilities starting from 6 months, indicating the infants' ability to detect phonetic differences. There was no correlation between infant-P1 latency, infant-P1 amplitude or mismatch response at term age and gestational age. This study suggests that cortical sound detection occurs very early and is not significantly influenced by the extent of prematurity but rather by corrected age. Early sound detection is followed by cortical sound content processing from about 6 months, with gradual organization along the cortical auditory dorsal stream and mirror neuron system in the first two years of life. Auditory discrimination of speech sounds also significantly changes from around 6 months of age.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121115"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105381192500117X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Maturation of the auditory system in early childhood significantly influences the development of language-related perceptual and cognitive abilities. This study aims to provide insights into the neurophysiological changes underlying auditory processing and speech-sound discrimination in the first two years of life. We conducted a study using high-density electroencephalography (EEG) to longitudinally record cortical auditory event-related potentials (CAEP) in response to synthesized syllable sounds with pitch/duration change in a cohort of 79 extremely and very preterm-born infants without developmental disorders. EEG were recorded at 6 timepoints from term to 24 months corrected age, using a pseudorandom oddball paradigm. We found that the infant-P1 component of CAEP showed decreasing latency with age and more focalized cortical source stabilizing in the left primary auditory cortex by 6 months. By 6 months, a negative infant-N1 component emerged, its amplitude increasing with age and source localization showing increasing distribution over the left temporal, parietal and frontal lobes. Mismatch responses demonstrated significant differences in auditory discrimination capabilities starting from 6 months, indicating the infants' ability to detect phonetic differences. There was no correlation between infant-P1 latency, infant-P1 amplitude or mismatch response at term age and gestational age. This study suggests that cortical sound detection occurs very early and is not significantly influenced by the extent of prematurity but rather by corrected age. Early sound detection is followed by cortical sound content processing from about 6 months, with gradual organization along the cortical auditory dorsal stream and mirror neuron system in the first two years of life. Auditory discrimination of speech sounds also significantly changes from around 6 months of age.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信