A Pilot Study on Using an Artificial Intelligence Algorithm to Identify Urolith Composition through Abdominal Radiographs in the Dog.

IF 1.3 2区 农林科学 Q2 VETERINARY SCIENCES
Rute Canejo-Teixeira, Mariana Carvalho, Gil Semião Teixeira, Ana Lima, Chris Crowell, Jack Kwok, Jody Lulich, Jolle Kirpensteijn, Federico Vilaplana Grosso
{"title":"A Pilot Study on Using an Artificial Intelligence Algorithm to Identify Urolith Composition through Abdominal Radiographs in the Dog.","authors":"Rute Canejo-Teixeira, Mariana Carvalho, Gil Semião Teixeira, Ana Lima, Chris Crowell, Jack Kwok, Jody Lulich, Jolle Kirpensteijn, Federico Vilaplana Grosso","doi":"10.1111/vru.70012","DOIUrl":null,"url":null,"abstract":"<p><p>In small animal practice, patients often present with urinary lithiasis, and prediction of urolith composition is essential to determine the appropriate treatment. Through abdominal radiographs, the composition of mineral radiopaque uroliths can be determined by considering many different factors; this can be complex and, as such, tailor-made for the use of artificial intelligence (AI). The Minnesota Urolith Center partnered with Hill's Pet Nutrition to develop a deep learning AI algorithm (CALCurad) within a smartphone application called the MN Urolith Application that allows for the preliminary assessment of urolith composition. The algorithm provides the probability of a urolith being composed of struvite from an image taken of an abdominal radiograph. This pilot study evaluates the accuracy of the CALCurad in the context of clinical practice. A sample population of 139 dogs was considered, and the results obtained by the CALCurad were compared with the results obtained by infrared spectroscopy analysis. Agreement between the application and quantitative analyses was 81.3%. These results suggest that the CALCurad can effectively be used to predict urolith composition in dogs, helping the clinician to decide between medical and surgical management of the patient. The use of the CALCurad is an example of the usefulness of AI in helping veterinarians make clinical decisions in patient care.</p>","PeriodicalId":23581,"journal":{"name":"Veterinary Radiology & Ultrasound","volume":"66 2","pages":"e70012"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Radiology & Ultrasound","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/vru.70012","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In small animal practice, patients often present with urinary lithiasis, and prediction of urolith composition is essential to determine the appropriate treatment. Through abdominal radiographs, the composition of mineral radiopaque uroliths can be determined by considering many different factors; this can be complex and, as such, tailor-made for the use of artificial intelligence (AI). The Minnesota Urolith Center partnered with Hill's Pet Nutrition to develop a deep learning AI algorithm (CALCurad) within a smartphone application called the MN Urolith Application that allows for the preliminary assessment of urolith composition. The algorithm provides the probability of a urolith being composed of struvite from an image taken of an abdominal radiograph. This pilot study evaluates the accuracy of the CALCurad in the context of clinical practice. A sample population of 139 dogs was considered, and the results obtained by the CALCurad were compared with the results obtained by infrared spectroscopy analysis. Agreement between the application and quantitative analyses was 81.3%. These results suggest that the CALCurad can effectively be used to predict urolith composition in dogs, helping the clinician to decide between medical and surgical management of the patient. The use of the CALCurad is an example of the usefulness of AI in helping veterinarians make clinical decisions in patient care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Radiology & Ultrasound
Veterinary Radiology & Ultrasound 农林科学-兽医学
CiteScore
2.40
自引率
17.60%
发文量
133
审稿时长
8-16 weeks
期刊介绍: Veterinary Radiology & Ultrasound is a bimonthly, international, peer-reviewed, research journal devoted to the fields of veterinary diagnostic imaging and radiation oncology. Established in 1958, it is owned by the American College of Veterinary Radiology and is also the official journal for six affiliate veterinary organizations. Veterinary Radiology & Ultrasound is represented on the International Committee of Medical Journal Editors, World Association of Medical Editors, and Committee on Publication Ethics. The mission of Veterinary Radiology & Ultrasound is to serve as a leading resource for high quality articles that advance scientific knowledge and standards of clinical practice in the areas of veterinary diagnostic radiology, computed tomography, magnetic resonance imaging, ultrasonography, nuclear imaging, radiation oncology, and interventional radiology. Manuscript types include original investigations, imaging diagnosis reports, review articles, editorials and letters to the Editor. Acceptance criteria include originality, significance, quality, reader interest, composition and adherence to author guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信