Novel orthotopic patient-derived xenograft model using human pancreatic cancer tissue fragments to recapitulate distant metastasis and cancer-related hypercoagulability.
{"title":"Novel orthotopic patient-derived xenograft model using human pancreatic cancer tissue fragments to recapitulate distant metastasis and cancer-related hypercoagulability.","authors":"Takuma Miura, Arisa Watanabe, Mutsumi Miyake, Sayaka Suga, Makoto Miyoshi, Kumiko Miyashita, Shohei Komatsu, Noriyuki Nishimura, Kazuya Shimizu, Yuichi Hori","doi":"10.1007/s00795-025-00425-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer is a malignant tumor that metastasizes to distant organs, such as the liver and lungs from an early stage. Few animal models can reproduce early metastasis. In addition, no model has been reported that reproduces cancer-related hypercoagulability, which is characteristic of pancreatic ductal adenocarcinoma and other adenocarcinomas. We hypothesized that the reason why the commonly used orthotopic cell xenograft model cannot reproduce the disease is inadequate construction of the cancer microenvironment. We developed an orthotopic tissue fragment xenograft model in which tumor tissue was transplanted into the pancreas of mice while preserving the microenvironment. Briefly, we injected single cancer cells subcutaneously to form a tumor, which was then cut with a scalpel into tumor fragments. A fragment was then sutured and fixed to the surface of the pancreatic tail. In this study, we evaluated the superiority of this model over a conventional orthotopic cell xenograft model. As a result, the novel orthotopic tissue xenograft model reproduced early distant metastasis to the liver and lung, nerve invasion, and cancer-related hypercoagulability of human pancreatic cancer, and showed greater similarity to clinical cases than the control orthotopic cell xenograft model.</p>","PeriodicalId":18338,"journal":{"name":"Medical Molecular Morphology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00795-025-00425-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer is a malignant tumor that metastasizes to distant organs, such as the liver and lungs from an early stage. Few animal models can reproduce early metastasis. In addition, no model has been reported that reproduces cancer-related hypercoagulability, which is characteristic of pancreatic ductal adenocarcinoma and other adenocarcinomas. We hypothesized that the reason why the commonly used orthotopic cell xenograft model cannot reproduce the disease is inadequate construction of the cancer microenvironment. We developed an orthotopic tissue fragment xenograft model in which tumor tissue was transplanted into the pancreas of mice while preserving the microenvironment. Briefly, we injected single cancer cells subcutaneously to form a tumor, which was then cut with a scalpel into tumor fragments. A fragment was then sutured and fixed to the surface of the pancreatic tail. In this study, we evaluated the superiority of this model over a conventional orthotopic cell xenograft model. As a result, the novel orthotopic tissue xenograft model reproduced early distant metastasis to the liver and lung, nerve invasion, and cancer-related hypercoagulability of human pancreatic cancer, and showed greater similarity to clinical cases than the control orthotopic cell xenograft model.
期刊介绍:
Medical Molecular Morphology is an international forum for researchers in both basic and clinical medicine to present and discuss new research on the structural mechanisms and the processes of health and disease at the molecular level. The structures of molecules, organelles, cells, tissues, and organs determine their normal function. Disease is thus best understood in terms of structural changes in these different levels of biological organization, especially in molecules and molecular interactions as well as the cellular localization of chemical components. Medical Molecular Morphology welcomes articles on basic or clinical research in the fields of cell biology, molecular biology, and medical, veterinary, and dental sciences using techniques for structural research such as electron microscopy, confocal laser scanning microscopy, enzyme histochemistry, immunohistochemistry, radioautography, X-ray microanalysis, and in situ hybridization.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.