Wenshi Hu, Shanshan Zhang, Wei Huang, Haibin Chang, Yinshui Li, Chiming Gu, Jing Dai, Lu Yang, Xing Liao, Lu Qin
{"title":"Nitrogen-driven changes in leaf anatomy affect the coupling between leaf mass per area and photosynthesis.","authors":"Wenshi Hu, Shanshan Zhang, Wei Huang, Haibin Chang, Yinshui Li, Chiming Gu, Jing Dai, Lu Yang, Xing Liao, Lu Qin","doi":"10.1093/jxb/eraf108","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf mass per area (LMA) and photosynthetic rate (A) explain fast-slow growth strategies in worldwide leaf economic spectrum. Nitrogen (N) promotes A and rapid growth; while LMA response to N supply in a genotype specific manner. Structural traits affect the relationship between LMA and A, and we hypothesized that N supply would affect structural traits and thus the coupling between LMA and A. We tested this hypothesis by measuring A, LMA, anatomical traits and N allocation to various leaf components in 9 Brassica napus cultivars under two N supply levels. Mesophyll cell density (ρcell) and palisade tissue thickness (Tp) predominantly influence the variability in LMA. Enhanced Tp increased LMA, chloroplast surface area exposed to intercellular airspace, and N allocation into Rubisco (Nrub), thereby positively affecting mesophyll conductance (gm) and A. Conversely, ρcell promoted LMA but negatively affect Nrub under N deficiency. Enhanced LMA promoted N allocation to cell wall (Ncw), causing decreased Nrub fraction, and consequently A. This negative effect was relieved by the positive effect of Tp on A, which coupled the variation of LMA and A. The plasticity of Tp and ρcell regulating gm and trade-off between Nrub and Ncw provides insights for simultaneous increases in LMA and A to promote rapid growth and resistance.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf mass per area (LMA) and photosynthetic rate (A) explain fast-slow growth strategies in worldwide leaf economic spectrum. Nitrogen (N) promotes A and rapid growth; while LMA response to N supply in a genotype specific manner. Structural traits affect the relationship between LMA and A, and we hypothesized that N supply would affect structural traits and thus the coupling between LMA and A. We tested this hypothesis by measuring A, LMA, anatomical traits and N allocation to various leaf components in 9 Brassica napus cultivars under two N supply levels. Mesophyll cell density (ρcell) and palisade tissue thickness (Tp) predominantly influence the variability in LMA. Enhanced Tp increased LMA, chloroplast surface area exposed to intercellular airspace, and N allocation into Rubisco (Nrub), thereby positively affecting mesophyll conductance (gm) and A. Conversely, ρcell promoted LMA but negatively affect Nrub under N deficiency. Enhanced LMA promoted N allocation to cell wall (Ncw), causing decreased Nrub fraction, and consequently A. This negative effect was relieved by the positive effect of Tp on A, which coupled the variation of LMA and A. The plasticity of Tp and ρcell regulating gm and trade-off between Nrub and Ncw provides insights for simultaneous increases in LMA and A to promote rapid growth and resistance.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.