Identification of Camellia Oil Adulteration With Excitation-Emission Matrix Fluorescence Spectra and Deep Learning.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Chaojie Wei, Wei Wang, Yanna Jiao, Seung-Chul Yoon, Xinzhi Ni, Xiaorong Wang, Ziwei Song
{"title":"Identification of Camellia Oil Adulteration With Excitation-Emission Matrix Fluorescence Spectra and Deep Learning.","authors":"Chaojie Wei, Wei Wang, Yanna Jiao, Seung-Chul Yoon, Xinzhi Ni, Xiaorong Wang, Ziwei Song","doi":"10.1007/s10895-025-04229-7","DOIUrl":null,"url":null,"abstract":"<p><p>Camellia oil (CAO), known for its high nutritional and commercial value, has raised increasing concerns about adulteration. Developing an accurate and non-destructive method to identify CAO adulterants is crucial for safeguarding public health and well-being. This study simulates potential real-world adulteration cases by designing representative adulteration scenarios, followed by the acquisition and analysis of corresponding excitation-emission matrix fluorescence (EEMF) spectra. Parallel factor analysis (PARAFAC) was employed to characterize and explore the variations of fluorophores in the EEMF spectra of different adulterated scenarioss, which showed a linear correlation between the relative concentration of PARAFAC components and adulteration levels. A deep learning model named ResTransformer, which combines residual modules with Transformer, was proposed for both the qualitative detection of adulteration types and the quantitative detection of adulteration concentrations from local and global perspectives. The global ResTransformer qualitative models achieved accuracies of over 96.92% based on EEMF spectra and PARAFAC, and quantitative models showed determination coefficient of validation ([Formula: see text]) > 0.978, root mean square error of validation ([Formula: see text]) < 3.0643%, and the ratio performance deviation (RPD) > 7.6741. Compared to traditional chemometric models, the ResTransformer model demonstrated superior performance. The integration of EEMF and ResTransformer presents a highly promising strategy for rapid and reliable detection of CAO adulteration.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04229-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Camellia oil (CAO), known for its high nutritional and commercial value, has raised increasing concerns about adulteration. Developing an accurate and non-destructive method to identify CAO adulterants is crucial for safeguarding public health and well-being. This study simulates potential real-world adulteration cases by designing representative adulteration scenarios, followed by the acquisition and analysis of corresponding excitation-emission matrix fluorescence (EEMF) spectra. Parallel factor analysis (PARAFAC) was employed to characterize and explore the variations of fluorophores in the EEMF spectra of different adulterated scenarioss, which showed a linear correlation between the relative concentration of PARAFAC components and adulteration levels. A deep learning model named ResTransformer, which combines residual modules with Transformer, was proposed for both the qualitative detection of adulteration types and the quantitative detection of adulteration concentrations from local and global perspectives. The global ResTransformer qualitative models achieved accuracies of over 96.92% based on EEMF spectra and PARAFAC, and quantitative models showed determination coefficient of validation ([Formula: see text]) > 0.978, root mean square error of validation ([Formula: see text]) < 3.0643%, and the ratio performance deviation (RPD) > 7.6741. Compared to traditional chemometric models, the ResTransformer model demonstrated superior performance. The integration of EEMF and ResTransformer presents a highly promising strategy for rapid and reliable detection of CAO adulteration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信