Kisspeptin fiber and receptor distribution analysis suggests its potential role in central sensorial processing and behavioral state control.

IF 3.3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Limei Zhang, Vito Salvador Hernández, Mario Alberto Zetter, Oscar Rene Hernández-Pérez, Rafael Hernández-González, Ignacio Camacho-Arroyo, Lee E Eiden, Robert P Millar
{"title":"Kisspeptin fiber and receptor distribution analysis suggests its potential role in central sensorial processing and behavioral state control.","authors":"Limei Zhang, Vito Salvador Hernández, Mario Alberto Zetter, Oscar Rene Hernández-Pérez, Rafael Hernández-González, Ignacio Camacho-Arroyo, Lee E Eiden, Robert P Millar","doi":"10.1111/jne.70007","DOIUrl":null,"url":null,"abstract":"<p><p>Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor Kiss1r. Previously, we characterized (Hernández et al. bioRxiv 2024) seven KP neuronal populations in the mouse brain at the mRNA level, including two novel populations, and examined their response to gonadectomy. In this study, we mapped KP fiber distribution in rats and mice using immunohistochemistry under intact as well as short- and long-term post-gonadectomy conditions. Kiss1r mRNA expression was examined via RNAscope, in relation to vesicular GABA transporter (Slc32a1) in whole mouse brain, and to KP and vesicular glutamate transporter 2 (Slc17a6), Kiss1, and Slc32a1 in hypothalamic RP3V and arcuate regions. We identified KP fibers in 118 brain regions, primarily in extra-hypothalamic areas associated with sensorial processing and behavioral state control. KP-immunoreactive fiber density and distribution were largely unchanged by gonadectomy. Kiss1r was expressed prominently in sensorial and state control regions such as the septal nuclei, the suprachiasmatic nucleus, locus coeruleus, hippocampal layers, thalamic nuclei, and cerebellar structures. Co-expression of Kiss1r and Kiss1 was observed in hypothalamic neurons, suggesting both autocrine and paracrine KP signaling mechanisms. These findings enhance our understanding of KP signaling beyond reproductive functions, particularly in sensorial processing and behavioral state regulation. This study opens new avenues for investigating KP's role in controlling complex physiological processes, including those unrelated to reproduction.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":" ","pages":"e70007"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jne.70007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor Kiss1r. Previously, we characterized (Hernández et al. bioRxiv 2024) seven KP neuronal populations in the mouse brain at the mRNA level, including two novel populations, and examined their response to gonadectomy. In this study, we mapped KP fiber distribution in rats and mice using immunohistochemistry under intact as well as short- and long-term post-gonadectomy conditions. Kiss1r mRNA expression was examined via RNAscope, in relation to vesicular GABA transporter (Slc32a1) in whole mouse brain, and to KP and vesicular glutamate transporter 2 (Slc17a6), Kiss1, and Slc32a1 in hypothalamic RP3V and arcuate regions. We identified KP fibers in 118 brain regions, primarily in extra-hypothalamic areas associated with sensorial processing and behavioral state control. KP-immunoreactive fiber density and distribution were largely unchanged by gonadectomy. Kiss1r was expressed prominently in sensorial and state control regions such as the septal nuclei, the suprachiasmatic nucleus, locus coeruleus, hippocampal layers, thalamic nuclei, and cerebellar structures. Co-expression of Kiss1r and Kiss1 was observed in hypothalamic neurons, suggesting both autocrine and paracrine KP signaling mechanisms. These findings enhance our understanding of KP signaling beyond reproductive functions, particularly in sensorial processing and behavioral state regulation. This study opens new avenues for investigating KP's role in controlling complex physiological processes, including those unrelated to reproduction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroendocrinology
Journal of Neuroendocrinology 医学-内分泌学与代谢
CiteScore
6.40
自引率
6.20%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field. In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信