Insulin resistance in Alzheimer's disease: signalling mechanisms and therapeutics strategies.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Mini Dahiya, Monu Yadav, Chetan Goyal, Anil Kumar
{"title":"Insulin resistance in Alzheimer's disease: signalling mechanisms and therapeutics strategies.","authors":"Mini Dahiya, Monu Yadav, Chetan Goyal, Anil Kumar","doi":"10.1007/s10787-025-01704-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD), one of the most common neurodegenerative disorders, is characterised by hallmark abnormalities such as amyloid-β plaques and neurofibrillary tangles (NFTs). Emerging evidence suggests that faulty insulin signalling contributes to these pathological features, impairing critical cellular and metabolic processes.</p><p><strong>Objective: </strong>This review aims to elucidate the role of insulin signalling in the central nervous system (CNS) under normal and pathological conditions and to explore therapeutic approaches targeting insulin pathways in AD and other neurodegenerative diseases.</p><p><strong>Methods: </strong>We reviewed studies highlighting the involvement of insulin-signalling pathways in neuronal health, with a particular focus on the key components-IRS, PI3K, Akt, and GSK-3β-predominantly expressed in cortical and hippocampal regions.</p><p><strong>Results: </strong>Insulin, an essential growth factor, regulates numerous cellular functions, including glucose metabolism, mitochondrial activity, oxidative stress response, autophagy, synaptic plasticity, and cognitive processes. Altered phosphorylation of signalling molecules in insulin pathways contributes to oxidative stress, inflammation, and the formation of AD hallmarks. Indirect modulators such as NF-κB and caspases further exacerbate neuronal damage, linking impaired insulin signalling to neurodegeneration.</p><p><strong>Conclusion: </strong>Insulin signalling plays a crucial role in maintaining neuronal health and mitigating neurodegenerative processes. Targeting insulin pathways and associated molecules offers promising therapeutic avenues for AD and other neurodegenerative disorders.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01704-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease (AD), one of the most common neurodegenerative disorders, is characterised by hallmark abnormalities such as amyloid-β plaques and neurofibrillary tangles (NFTs). Emerging evidence suggests that faulty insulin signalling contributes to these pathological features, impairing critical cellular and metabolic processes.

Objective: This review aims to elucidate the role of insulin signalling in the central nervous system (CNS) under normal and pathological conditions and to explore therapeutic approaches targeting insulin pathways in AD and other neurodegenerative diseases.

Methods: We reviewed studies highlighting the involvement of insulin-signalling pathways in neuronal health, with a particular focus on the key components-IRS, PI3K, Akt, and GSK-3β-predominantly expressed in cortical and hippocampal regions.

Results: Insulin, an essential growth factor, regulates numerous cellular functions, including glucose metabolism, mitochondrial activity, oxidative stress response, autophagy, synaptic plasticity, and cognitive processes. Altered phosphorylation of signalling molecules in insulin pathways contributes to oxidative stress, inflammation, and the formation of AD hallmarks. Indirect modulators such as NF-κB and caspases further exacerbate neuronal damage, linking impaired insulin signalling to neurodegeneration.

Conclusion: Insulin signalling plays a crucial role in maintaining neuronal health and mitigating neurodegenerative processes. Targeting insulin pathways and associated molecules offers promising therapeutic avenues for AD and other neurodegenerative disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信