Chang-Jin Lee, Yoojun Nam, Yeri Alice Rim, Ji Hyeon Ju
{"title":"Advanced Animal Replacement Testing Strategies Using Stem Cell and Organoids.","authors":"Chang-Jin Lee, Yoojun Nam, Yeri Alice Rim, Ji Hyeon Ju","doi":"10.15283/ijsc24118","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing ethical concerns and regulatory restrictions surrounding animal testing have accelerated the development of advanced <i>in vitro</i> models that more accurately replicate human physiology. Among these, stem cell-based systems and organoids have emerged as revolutionary tools, providing ethical, scalable, and physiologically relevant alternatives. This review explores the key trends and driving factors behind the adoption of these models, such as technological advancements, the principles of the 3Rs (Replacement, Reduction, and Refinement), and growing regulatory support from agencies like the OECD and FDA. It also delves into the development and application of various model systems, including 3D reconstructed tissues, induced pluripotent stem cell-derived cells, and microphysiological systems, highlighting their potential to replace animal models in toxicity evaluation, disease modeling, and drug development. A critical aspect of implementing these models is ensuring robust quality control protocols to enhance reproducibility and standardization, which is necessary for gaining regulatory acceptance. Additionally, we discuss advanced strategies for assessing toxicity and efficacy, focusing on organ-specific evaluation methods and applications in diverse fields such as pharmaceuticals, cosmetics, and food safety. Despite existing challenges related to scalability, standardization, and regulatory alignment, these innovative models represent a transformative step towards reducing animal use and improving the relevance and reliability of preclinical testing outcomes.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc24118","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing ethical concerns and regulatory restrictions surrounding animal testing have accelerated the development of advanced in vitro models that more accurately replicate human physiology. Among these, stem cell-based systems and organoids have emerged as revolutionary tools, providing ethical, scalable, and physiologically relevant alternatives. This review explores the key trends and driving factors behind the adoption of these models, such as technological advancements, the principles of the 3Rs (Replacement, Reduction, and Refinement), and growing regulatory support from agencies like the OECD and FDA. It also delves into the development and application of various model systems, including 3D reconstructed tissues, induced pluripotent stem cell-derived cells, and microphysiological systems, highlighting their potential to replace animal models in toxicity evaluation, disease modeling, and drug development. A critical aspect of implementing these models is ensuring robust quality control protocols to enhance reproducibility and standardization, which is necessary for gaining regulatory acceptance. Additionally, we discuss advanced strategies for assessing toxicity and efficacy, focusing on organ-specific evaluation methods and applications in diverse fields such as pharmaceuticals, cosmetics, and food safety. Despite existing challenges related to scalability, standardization, and regulatory alignment, these innovative models represent a transformative step towards reducing animal use and improving the relevance and reliability of preclinical testing outcomes.
期刊介绍:
International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.