The Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Regulates Sirtuin-1-Mediated Neutrophil Extracellular Traps to Improve Diabetes-Induced Bone Metabolism Imbalance.

IF 1.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Iranian Journal of Pharmaceutical Research Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.5812/ijpr-148139
Shuai Zhong, Liangzhi Huang, Tingting Lin, Yanyan Li, Bin Deng, Dezhi Kong, Zhanlin Liao, Zugui Huang
{"title":"The Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Regulates Sirtuin-1-Mediated Neutrophil Extracellular Traps to Improve Diabetes-Induced Bone Metabolism Imbalance.","authors":"Shuai Zhong, Liangzhi Huang, Tingting Lin, Yanyan Li, Bin Deng, Dezhi Kong, Zhanlin Liao, Zugui Huang","doi":"10.5812/ijpr-148139","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes mellitus (DM) is a chronic metabolic disorder that disrupts normal bone remodeling.</p><p><strong>Objectives: </strong>This study aimed to investigate how the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LIR) addresses bone metabolism imbalances induced by type-II diabetes.</p><p><strong>Methods: </strong>Type-II diabetic rat models were established through a single intraperitoneal injection of streptozotocin (STZ). Blood glucose levels were measured using a blood glucose meter, and insulin levels were assessed using an assay kit. Bone formation markers [alkaline phosphatase (ALP), osteocalcin (OCN), and procollagen I N-terminal propeptide (PINP)] and bone resorption markers [tartrate-resistant acid phosphatase (TRACP) and CTX-1] were monitored using assay kits. Bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro under high-fat and high-glucose (HFHS) conditions to mimic diabetic bone metabolism dysregulation. Neutrophil extracellular traps (NETs) formation was examined through immunofluorescent staining and Western blot analysis.</p><p><strong>Results: </strong>Liraglutide was found to reduce STZ-induced NETs formation, as indicated by decreased expression of cit-H3 by 36.90% - 53.57%, myeloperoxidase (MPO) by 55.81% - 65.12%, NE by 53.95% - 65.17%, and PAD4 by 46.81% - 63.83%, alongside increased Sirtuin-1 (SIRT1) expression in femur tissue (70.71% - 91.19%). In vitro, LIR enhanced osteogenesis and inhibited apoptosis, effects that were partially reversed by SIRT1 knockdown. Additionally, SIRT1 knockdown partially restored LIR-induced reductions in oxidative stress, inflammation, and NETs formation.</p><p><strong>Conclusions: </strong>LIR mitigates diabetes-induced bone metabolism imbalance by inhibiting NETs formation through SIRT1 mediation.</p>","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"23 1","pages":"e148139"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/ijpr-148139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetes mellitus (DM) is a chronic metabolic disorder that disrupts normal bone remodeling.

Objectives: This study aimed to investigate how the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LIR) addresses bone metabolism imbalances induced by type-II diabetes.

Methods: Type-II diabetic rat models were established through a single intraperitoneal injection of streptozotocin (STZ). Blood glucose levels were measured using a blood glucose meter, and insulin levels were assessed using an assay kit. Bone formation markers [alkaline phosphatase (ALP), osteocalcin (OCN), and procollagen I N-terminal propeptide (PINP)] and bone resorption markers [tartrate-resistant acid phosphatase (TRACP) and CTX-1] were monitored using assay kits. Bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro under high-fat and high-glucose (HFHS) conditions to mimic diabetic bone metabolism dysregulation. Neutrophil extracellular traps (NETs) formation was examined through immunofluorescent staining and Western blot analysis.

Results: Liraglutide was found to reduce STZ-induced NETs formation, as indicated by decreased expression of cit-H3 by 36.90% - 53.57%, myeloperoxidase (MPO) by 55.81% - 65.12%, NE by 53.95% - 65.17%, and PAD4 by 46.81% - 63.83%, alongside increased Sirtuin-1 (SIRT1) expression in femur tissue (70.71% - 91.19%). In vitro, LIR enhanced osteogenesis and inhibited apoptosis, effects that were partially reversed by SIRT1 knockdown. Additionally, SIRT1 knockdown partially restored LIR-induced reductions in oxidative stress, inflammation, and NETs formation.

Conclusions: LIR mitigates diabetes-induced bone metabolism imbalance by inhibiting NETs formation through SIRT1 mediation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
52
审稿时长
2 months
期刊介绍: The Iranian Journal of Pharmaceutical Research (IJPR) is a peer-reviewed multi-disciplinary pharmaceutical publication, scheduled to appear quarterly and serve as a means for scientific information exchange in the international pharmaceutical forum. Specific scientific topics of interest to the journal include, but are not limited to: pharmaceutics, industrial pharmacy, pharmacognosy, toxicology, medicinal chemistry, novel analytical methods for drug characterization, computational and modeling approaches to drug design, bio-medical experience, clinical investigation, rational drug prescribing, pharmacoeconomics, biotechnology, nanotechnology, biopharmaceutics and physical pharmacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信