Visual categorisation of images of familiar objects based on their authenticity: an fMRI study.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Grace A Gabriel, Cristina Simões-Franklin, Georgia O'Callaghan, John Stapleton, Fiona N Newell
{"title":"Visual categorisation of images of familiar objects based on their authenticity: an fMRI study.","authors":"Grace A Gabriel, Cristina Simões-Franklin, Georgia O'Callaghan, John Stapleton, Fiona N Newell","doi":"10.1007/s00221-024-06989-3","DOIUrl":null,"url":null,"abstract":"<p><p>Under most circumstances, we can rely visual information to quickly and accurately discriminate \"real\" objects (e.g., fresh fruit) from \"fake\" objects (e.g., plastic fruit). It is unclear, however, whether this distinction is made early along the ventral visual stream when basic object features such as colour (e.g., primary visual cortex; V1) and texture (e.g., collateral sulcus; COS) are being processed, or whether information regarding object authenticity is extracted in later visual or memory regions (e.g., perirhinal cortex, lateral occipital cortex). To examine this question, participants were placed in an fMRI scanner, and presented with 300 objects photographed in colour or greyscale. Half of the objects were fake, and the other half were real. The participant's task was to categorise each image as presenting either a real or fake object. Broadly, our analyses revealed significant activation in CoS when participants categorised real objects, particularly when they were presented in colour. We also observed activation in V1 for coloured objects, particularly real ones. These results suggest that our seemingly intuitive ability to rapidly discriminate real from fake objects occurs at the early stages of visual processing, such as when the brain is extracting surface-feature information like texture (CoS) or colour (V1). Future studies could consider the time course of these neural events and probe the importance of cross-modal (e.g., audition and haptic) information underpinning feature extraction for distinguishing real from fake objects.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 4","pages":"87"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06989-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Under most circumstances, we can rely visual information to quickly and accurately discriminate "real" objects (e.g., fresh fruit) from "fake" objects (e.g., plastic fruit). It is unclear, however, whether this distinction is made early along the ventral visual stream when basic object features such as colour (e.g., primary visual cortex; V1) and texture (e.g., collateral sulcus; COS) are being processed, or whether information regarding object authenticity is extracted in later visual or memory regions (e.g., perirhinal cortex, lateral occipital cortex). To examine this question, participants were placed in an fMRI scanner, and presented with 300 objects photographed in colour or greyscale. Half of the objects were fake, and the other half were real. The participant's task was to categorise each image as presenting either a real or fake object. Broadly, our analyses revealed significant activation in CoS when participants categorised real objects, particularly when they were presented in colour. We also observed activation in V1 for coloured objects, particularly real ones. These results suggest that our seemingly intuitive ability to rapidly discriminate real from fake objects occurs at the early stages of visual processing, such as when the brain is extracting surface-feature information like texture (CoS) or colour (V1). Future studies could consider the time course of these neural events and probe the importance of cross-modal (e.g., audition and haptic) information underpinning feature extraction for distinguishing real from fake objects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信