Bile acid derivatives as novel co-adsorbents for enhanced performance of blue dye-sensitized solar cells.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kezia Sasitharan, Allan J Mora Abarca, Fabio Cucinotta, Leslie W Pineda, Victor Hugo Soto Tellini, Marina Freitag
{"title":"Bile acid derivatives as novel co-adsorbents for enhanced performance of blue dye-sensitized solar cells.","authors":"Kezia Sasitharan, Allan J Mora Abarca, Fabio Cucinotta, Leslie W Pineda, Victor Hugo Soto Tellini, Marina Freitag","doi":"10.1038/s42004-025-01433-1","DOIUrl":null,"url":null,"abstract":"<p><p>Diketopyrrolopyrrole-based blue dyes in dye-sensitized solar cells (DSCs) exhibit promise for building-integrated photovoltaics, but their efficiency is compromised by dye aggregation-induced charge recombination. Novel bile acid derivative co-adsorbents featuring bulky hydrophobic substituents at the 3-β position were synthesized to address this challenge. These molecules, designed to modulate intermolecular electronic interactions, effectively altered the TiO<sub>2</sub> surface coverage dynamics, as evidenced by UV-Vis spectroscopy and dye-loading kinetics. Systematic variation of hydrophilic substituents revealed structure-function relationships in dye separation efficacy. Devices incorporating these co-adsorbers achieved power conversion efficiencies (PCE) of 7.6%, surpassing reference devices (5.2%) and those using conventional chenodeoxycholic acid co-adsorbers (6.4%). The optimized devices exhibited a 30% increase in short-circuit current density, 30 mV enhancement in open-circuit voltage, and 60% peak external quantum efficiency at 550 nm. Time-resolved photoluminescence spectroscopy confirmed suppressed non-radiative recombination, while transient absorption spectroscopy revealed accelerated electron injection rates from 6.4 ps to 4.6 ps. Electrochemical impedance spectroscopy elucidated the mechanism of reduced interfacial recombination. These findings present a molecular engineering strategy for mitigating lateral charge transfer in planar dye systems, advancing semi-transparent hybrid photovoltaics.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"75"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01433-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diketopyrrolopyrrole-based blue dyes in dye-sensitized solar cells (DSCs) exhibit promise for building-integrated photovoltaics, but their efficiency is compromised by dye aggregation-induced charge recombination. Novel bile acid derivative co-adsorbents featuring bulky hydrophobic substituents at the 3-β position were synthesized to address this challenge. These molecules, designed to modulate intermolecular electronic interactions, effectively altered the TiO2 surface coverage dynamics, as evidenced by UV-Vis spectroscopy and dye-loading kinetics. Systematic variation of hydrophilic substituents revealed structure-function relationships in dye separation efficacy. Devices incorporating these co-adsorbers achieved power conversion efficiencies (PCE) of 7.6%, surpassing reference devices (5.2%) and those using conventional chenodeoxycholic acid co-adsorbers (6.4%). The optimized devices exhibited a 30% increase in short-circuit current density, 30 mV enhancement in open-circuit voltage, and 60% peak external quantum efficiency at 550 nm. Time-resolved photoluminescence spectroscopy confirmed suppressed non-radiative recombination, while transient absorption spectroscopy revealed accelerated electron injection rates from 6.4 ps to 4.6 ps. Electrochemical impedance spectroscopy elucidated the mechanism of reduced interfacial recombination. These findings present a molecular engineering strategy for mitigating lateral charge transfer in planar dye systems, advancing semi-transparent hybrid photovoltaics.

胆汁酸衍生物作为新型共吸附剂用于提高蓝色染料敏化太阳能电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信