Dopamine D1 receptor agonist alleviates post-weaning isolation-induced neuroinflammation and depression-like behaviors in female mice.

IF 4.7 2区 心理学 Q1 BEHAVIORAL SCIENCES
Zi-Wei Zhao, Yun-Chen Wang, Pei-Chun Chen, Shun-Fen Tzeng, Po-See Chen, Yu-Min Kuo
{"title":"Dopamine D1 receptor agonist alleviates post-weaning isolation-induced neuroinflammation and depression-like behaviors in female mice.","authors":"Zi-Wei Zhao, Yun-Chen Wang, Pei-Chun Chen, Shun-Fen Tzeng, Po-See Chen, Yu-Min Kuo","doi":"10.1186/s12993-025-00269-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Major depressive disorder is a significant global cause of disability, particularly among adolescents. The dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders.</p><p><strong>Results: </strong>Adolescent mice underwent 8 weeks of PWI before evaluating their depression-like behaviors and the activation status of microglia in the frontostriatal regions. Selective D1-like dopamine receptor agonist SKF-81,297 was administered into the medial prefrontal cortex (mPFC) of PWI mice to assess its antidepressant and anti-microglial activation properties. The effects of SKF-81,297 on inflammatory signaling pathways were examined in BV2 microglial cells. After 8 weeks of PWI, female mice exhibited more severe depression-like behaviors than males, with greater microglial activation in the frontostriatal regions. Microglial activation in mPFC was the most prominent among the three frontostriatal regions examined, and it was positively correlated with the severity of depression-like behaviors. Female PWI mice exhibited increased expression of dopamine D2 receptors (D2R). SKF-81,297 treatment alleviated depression-like behaviors and local microglial activation induced by PWI; however, SKF-81,297 induced these alterations in naïve mice. In vitro, SKF-81,297 decreased pro-inflammatory cytokine release and phosphorylations of JNK and ERK induced by lipopolysaccharide, while in untreated BV2 cells, SKF-81,297 elicited inflammation.</p><p><strong>Conclusions: </strong>This study highlights a sex-specific susceptibility to PWI-induced neuroinflammation and depression. While targeting the D1R shows potential in alleviating PWI-induced changes, further investigation is required to evaluate potential adverse effects under normal conditions.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"21 1","pages":"6"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-025-00269-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Major depressive disorder is a significant global cause of disability, particularly among adolescents. The dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders.

Results: Adolescent mice underwent 8 weeks of PWI before evaluating their depression-like behaviors and the activation status of microglia in the frontostriatal regions. Selective D1-like dopamine receptor agonist SKF-81,297 was administered into the medial prefrontal cortex (mPFC) of PWI mice to assess its antidepressant and anti-microglial activation properties. The effects of SKF-81,297 on inflammatory signaling pathways were examined in BV2 microglial cells. After 8 weeks of PWI, female mice exhibited more severe depression-like behaviors than males, with greater microglial activation in the frontostriatal regions. Microglial activation in mPFC was the most prominent among the three frontostriatal regions examined, and it was positively correlated with the severity of depression-like behaviors. Female PWI mice exhibited increased expression of dopamine D2 receptors (D2R). SKF-81,297 treatment alleviated depression-like behaviors and local microglial activation induced by PWI; however, SKF-81,297 induced these alterations in naïve mice. In vitro, SKF-81,297 decreased pro-inflammatory cytokine release and phosphorylations of JNK and ERK induced by lipopolysaccharide, while in untreated BV2 cells, SKF-81,297 elicited inflammation.

Conclusions: This study highlights a sex-specific susceptibility to PWI-induced neuroinflammation and depression. While targeting the D1R shows potential in alleviating PWI-induced changes, further investigation is required to evaluate potential adverse effects under normal conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioral and Brain Functions
Behavioral and Brain Functions 医学-行为科学
CiteScore
5.90
自引率
0.00%
发文量
11
审稿时长
6-12 weeks
期刊介绍: A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信