Augmenting the human interactome for disease prediction through gene networks inferred from human cell atlas.

IF 2.5 2区 生物学 Q3 CELL BIOLOGY
Animal Cells and Systems Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.1080/19768354.2025.2472002
Euijeong Sung, Junha Cha, Seungbyn Baek, Insuk Lee
{"title":"Augmenting the human interactome for disease prediction through gene networks inferred from human cell atlas.","authors":"Euijeong Sung, Junha Cha, Seungbyn Baek, Insuk Lee","doi":"10.1080/19768354.2025.2472002","DOIUrl":null,"url":null,"abstract":"<p><p>Gene co-expression network inference from bulk tissue samples often misses cell-type-specific interactions, which can be detected through single-cell gene expression data. However, the noise and sparsity of single-cell data challenge the inference of these networks. We developed scNET, a framework for integrative cell-type-specific co-expression network inference from single-cell transcriptome data, demonstrating its utility in augmenting the human interactome for more accurate disease gene prediction. We address the limitations of <i>de novo</i> network inference from single-cell expression data through dropout imputation, metacell formation, and data transformation. Employing this data preprocessing pipeline, we inferred cell-type-specific co-expression links from single-cell atlas data, covering various cell types and tissues, and integrated over 850K of these inferred links into a preexisting human interactome, HumanNet, resulting in HumanNet-plus. This integration notably enhanced the accuracy of network-based disease gene prediction. These findings suggest that with proper data preprocessing, network inference from single-cell gene expression data can be highly effective, potentially enriching the human interactome and advancing the field of network medicine.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"11-20"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2472002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene co-expression network inference from bulk tissue samples often misses cell-type-specific interactions, which can be detected through single-cell gene expression data. However, the noise and sparsity of single-cell data challenge the inference of these networks. We developed scNET, a framework for integrative cell-type-specific co-expression network inference from single-cell transcriptome data, demonstrating its utility in augmenting the human interactome for more accurate disease gene prediction. We address the limitations of de novo network inference from single-cell expression data through dropout imputation, metacell formation, and data transformation. Employing this data preprocessing pipeline, we inferred cell-type-specific co-expression links from single-cell atlas data, covering various cell types and tissues, and integrated over 850K of these inferred links into a preexisting human interactome, HumanNet, resulting in HumanNet-plus. This integration notably enhanced the accuracy of network-based disease gene prediction. These findings suggest that with proper data preprocessing, network inference from single-cell gene expression data can be highly effective, potentially enriching the human interactome and advancing the field of network medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Animal Cells and Systems
Animal Cells and Systems 生物-动物学
CiteScore
4.50
自引率
24.10%
发文量
33
审稿时长
6 months
期刊介绍: Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信