Melatonin attenuates inflammatory bone loss by alleviating mitophagy and lactate production.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zexin Lin, Yuan Gu, Yingsong Liu, Zilin Chen, Shuai Fang, Zhuan Wang, Zixian Liu, Qingrong Lin, Yanjun Hu, Nan Jiang, Bin Yu, Guanqiao Liu
{"title":"Melatonin attenuates inflammatory bone loss by alleviating mitophagy and lactate production.","authors":"Zexin Lin, Yuan Gu, Yingsong Liu, Zilin Chen, Shuai Fang, Zhuan Wang, Zixian Liu, Qingrong Lin, Yanjun Hu, Nan Jiang, Bin Yu, Guanqiao Liu","doi":"10.1007/s10495-025-02096-y","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial homeostasis plays a major role in the progression of chronic inflammatory bone loss which has a complex pathogenesis with unsatisfactory therapeutic efficiency. Recently, melatonin has been shown to recipient mitochondrial function and bone formation. However, the effects and underlying molecular mechanism of melatonin in chronic inflammatory bone loss remain unclear. Here, we reported that melatonin ameliorated lipopolysaccharide (LPS)-induced inflammatory bone loss by improving osteogenesis. We found that melatonin rescued LPS-induced mitochondrial dysfunction and metabolic reprogramming in osteoblasts, resulting in reduced osteogenesis impairment. Mechanistically, melatonin inhibited mitochondrial reactive oxygen species (mtROS) production by suppressing LPS-induced mitophagy, which attenuated the activation of the mtROS/HIF-1α/pyruvate dehydrogenase kinase 1 (PDK1) axis. Moreover, melatonin restored pyruvate dehydrogenase (PDH) activity by inhibiting phosphorylation of PDH through the mtROS/HIF-1α/PDK1 axis and eventually downregulated lactate production. These findings indicate the therapeutic effects of melatonin against chronic inflammatory bone loss and demonstrated a potential treatment strategy against inflammatory osteogenic disorders through regulating mitochondrial dysfunction and metabolic reprogramming.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02096-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial homeostasis plays a major role in the progression of chronic inflammatory bone loss which has a complex pathogenesis with unsatisfactory therapeutic efficiency. Recently, melatonin has been shown to recipient mitochondrial function and bone formation. However, the effects and underlying molecular mechanism of melatonin in chronic inflammatory bone loss remain unclear. Here, we reported that melatonin ameliorated lipopolysaccharide (LPS)-induced inflammatory bone loss by improving osteogenesis. We found that melatonin rescued LPS-induced mitochondrial dysfunction and metabolic reprogramming in osteoblasts, resulting in reduced osteogenesis impairment. Mechanistically, melatonin inhibited mitochondrial reactive oxygen species (mtROS) production by suppressing LPS-induced mitophagy, which attenuated the activation of the mtROS/HIF-1α/pyruvate dehydrogenase kinase 1 (PDK1) axis. Moreover, melatonin restored pyruvate dehydrogenase (PDH) activity by inhibiting phosphorylation of PDH through the mtROS/HIF-1α/PDK1 axis and eventually downregulated lactate production. These findings indicate the therapeutic effects of melatonin against chronic inflammatory bone loss and demonstrated a potential treatment strategy against inflammatory osteogenic disorders through regulating mitochondrial dysfunction and metabolic reprogramming.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信