Harnessing Lithiophilic Hetero-Interfacial Chemistry for Stable Lithium Metal Batteries with Low Negative/Positive Capacity Ratios.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ruopian Fang, Ke Chen, Zhenhua Sun, Da-Wei Wang, Feng Li
{"title":"Harnessing Lithiophilic Hetero-Interfacial Chemistry for Stable Lithium Metal Batteries with Low Negative/Positive Capacity Ratios.","authors":"Ruopian Fang, Ke Chen, Zhenhua Sun, Da-Wei Wang, Feng Li","doi":"10.1002/smtd.202402082","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium (Li) metal batteries hold great promise for next-generation energy storage due to their high energy density. However, their application is hindered by uncontrollable Li plating/stripping, leading to limited cycle life, especially under practical conditions with a low negative/positive (N/P) capacity ratio. Here, it is demonstrated that stable cycling of low N/P ratio Li metal batteries can be realized by harnessing hetero-interfacial redox chemistry to regulate Li nucleation and deposition behavior. It is shown that replacing pure Li metal with intercalated Li in graphite facilitates the formation of an increasingly lithiophilic heterointerface upon discharge, which homogenizes Li deposition during subsequent charge, resulting in highly reversible Li plating/stripping with minimal active Li loss under lean Li conditions. This enables Li metal cells with a Li/graphite hybrid anode to demonstrate remarkable improvements in cycling life, even with an N/P ratio as low as 0.4, compared to those with a pure Li metal anode. This strategy provides new insights into the role of hetero-interfacial chemistry in constructing highly reversible composite anodes for high-energy and long-cycling Li metal batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402082"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402082","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) metal batteries hold great promise for next-generation energy storage due to their high energy density. However, their application is hindered by uncontrollable Li plating/stripping, leading to limited cycle life, especially under practical conditions with a low negative/positive (N/P) capacity ratio. Here, it is demonstrated that stable cycling of low N/P ratio Li metal batteries can be realized by harnessing hetero-interfacial redox chemistry to regulate Li nucleation and deposition behavior. It is shown that replacing pure Li metal with intercalated Li in graphite facilitates the formation of an increasingly lithiophilic heterointerface upon discharge, which homogenizes Li deposition during subsequent charge, resulting in highly reversible Li plating/stripping with minimal active Li loss under lean Li conditions. This enables Li metal cells with a Li/graphite hybrid anode to demonstrate remarkable improvements in cycling life, even with an N/P ratio as low as 0.4, compared to those with a pure Li metal anode. This strategy provides new insights into the role of hetero-interfacial chemistry in constructing highly reversible composite anodes for high-energy and long-cycling Li metal batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信