{"title":"Stacking Pressure Modulated Deposition and Dissolution of Zinc Anode","authors":"Yuehua Wen, Kesong Yu, Shouren Zhan, Xiaobin Liao, Zhipeng Zhang, Xiaqing Ran, Bowei Li, Suttipong Wannapaiboon, Mengyu Yan","doi":"10.1002/smll.202501242","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (ZIBs) are emerging as a promising candidate for large-scale energy storage, offering enhanced safety and low costs. Nevertheless, the disordered growth of zinc dendrites has resulted in low coulombic efficiency and the dangers of short circuits, limiting the commercialization of ZIBs. In this study, a planar growth of zinc along the (002) direction is achieved by regulating the moderate initial stacking pressure during cell cycling and facilitating a larger zinc deposition particle size. The pivotal role of stacking pressure on the zinc nucleation, growth, and dissolution processes is elucidated with in situ pressure X-ray diffraction (XRD), time of flight secondary ion mass spectrometry (TOF-SIMs), and scanning electronic microscopy (SEM). By adjusting the staking pressure from 20 to 300 kPa, the battery cycle time increased 5 times. This work highlights the opportunity to precisely manipulate metal deposition/dissolution with stacking pressure for long-cycle life batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 17","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501242","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion batteries (ZIBs) are emerging as a promising candidate for large-scale energy storage, offering enhanced safety and low costs. Nevertheless, the disordered growth of zinc dendrites has resulted in low coulombic efficiency and the dangers of short circuits, limiting the commercialization of ZIBs. In this study, a planar growth of zinc along the (002) direction is achieved by regulating the moderate initial stacking pressure during cell cycling and facilitating a larger zinc deposition particle size. The pivotal role of stacking pressure on the zinc nucleation, growth, and dissolution processes is elucidated with in situ pressure X-ray diffraction (XRD), time of flight secondary ion mass spectrometry (TOF-SIMs), and scanning electronic microscopy (SEM). By adjusting the staking pressure from 20 to 300 kPa, the battery cycle time increased 5 times. This work highlights the opportunity to precisely manipulate metal deposition/dissolution with stacking pressure for long-cycle life batteries.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.