B-Modified Pd Cathodes for the Efficient Detoxification of Halogenated Antibiotics: Enhancing C-F Bond Breakage beyond Hydrodefluorination.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zefang Chen, Lin Du, Victor Fung, Qingquan Ma, Xiaojun Wang, Shaohua Chen, John C Crittenden, Yongsheng Chen
{"title":"B-Modified Pd Cathodes for the Efficient Detoxification of Halogenated Antibiotics: Enhancing C-F Bond Breakage beyond Hydrodefluorination.","authors":"Zefang Chen, Lin Du, Victor Fung, Qingquan Ma, Xiaojun Wang, Shaohua Chen, John C Crittenden, Yongsheng Chen","doi":"10.1021/acs.est.4c12635","DOIUrl":null,"url":null,"abstract":"<p><p>Halogenated antibiotics pose a great threat to aqueous environments because of their persistent biotoxicity from carbon-halogen bonds. Electrochemical reduction (ER) is an efficient technology for dehalogenation, but it still suffers from limited efficiencies in breaking C-F bonds. Herein, we present a strategy to enhance C-F cleavage and promote detoxification by loading benchmark palladium cathodes onto boron-doped carbon. This improves the florfenicol (FLO) degradation rate constant and defluorination efficiency by 1.24 and 1.05 times, respectively, and improves the defluorination of various fluorinated compounds. The cathode with optimal B content shows superior mass activity for FLO degradation (1.11 mmol g<sup>-1</sup> Pd min<sup>-1</sup>), which is 5.9 times that of commercial Pd/C and is among the best-reported cathodes. Notably, the exclusive formation of the direct defluorination product (i.e., FLO-F) on Pd/B-C implies a higher intrinsic C-F cleavage ability endowed by B doping. As revealed by experiments and theoretical calculations, boron modification enhances palladium binding and induces stronger strain effects and higher electron density for surface palladium atoms, which boosts H* generation and reduces the energy barrier for C-F cleavage. This study provides an effective cathode design strategy to enhance C-F activation, which may broadly benefit the destruction and detoxification of fluorinated organics that are limited by sluggish C-F cleavage kinetics.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12635","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Halogenated antibiotics pose a great threat to aqueous environments because of their persistent biotoxicity from carbon-halogen bonds. Electrochemical reduction (ER) is an efficient technology for dehalogenation, but it still suffers from limited efficiencies in breaking C-F bonds. Herein, we present a strategy to enhance C-F cleavage and promote detoxification by loading benchmark palladium cathodes onto boron-doped carbon. This improves the florfenicol (FLO) degradation rate constant and defluorination efficiency by 1.24 and 1.05 times, respectively, and improves the defluorination of various fluorinated compounds. The cathode with optimal B content shows superior mass activity for FLO degradation (1.11 mmol g-1 Pd min-1), which is 5.9 times that of commercial Pd/C and is among the best-reported cathodes. Notably, the exclusive formation of the direct defluorination product (i.e., FLO-F) on Pd/B-C implies a higher intrinsic C-F cleavage ability endowed by B doping. As revealed by experiments and theoretical calculations, boron modification enhances palladium binding and induces stronger strain effects and higher electron density for surface palladium atoms, which boosts H* generation and reduces the energy barrier for C-F cleavage. This study provides an effective cathode design strategy to enhance C-F activation, which may broadly benefit the destruction and detoxification of fluorinated organics that are limited by sluggish C-F cleavage kinetics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信