Biogeochemical Controls on Latitudinal (42°N to 70°S) and Depth Distribution of Organophosphate Esters in the Atlantic and Southern Oceans.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2025-03-25 Epub Date: 2025-03-10 DOI:10.1021/acs.est.4c12555
Núria Trilla-Prieto, Naiara Berrojalbiz, Jon Iriarte, Antonio Fuentes-Lema, Cristina Sobrino, Maria Vila-Costa, Begoña Jiménez, Jordi Dachs
{"title":"Biogeochemical Controls on Latitudinal (42°N to 70°S) and Depth Distribution of Organophosphate Esters in the Atlantic and Southern Oceans.","authors":"Núria Trilla-Prieto, Naiara Berrojalbiz, Jon Iriarte, Antonio Fuentes-Lema, Cristina Sobrino, Maria Vila-Costa, Begoña Jiménez, Jordi Dachs","doi":"10.1021/acs.est.4c12555","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale oceanic assessments are key for determining the persistence and long-range transport potential of organic pollutants, but there is a dearth of these for organophosphate esters (OPEs), widely used as flame retardants and plasticizers. This work reports the latitudinal distribution (42°N-70°S) and vertical profiles (from the surface to 2000 m depth) of OPEs in the Atlantic and Southern Oceans and explores their biogeochemical controls. The latitudinal gradient shows higher surface OPE concentrations near the equator than at higher latitudes, consistent with the prevailing oceanic and atmospheric circulation, and measured wet deposition events. At the deep chlorophyll maximum depth, there was an inverse correlation between the concentrations of the OPEs and phytoplankton biomass, with the lowest concentrations in the Southern Ocean, consistent with the role of the biological pump depleting the levels of the OPEs from the photic zone. OPE latitudinal trends in the deep ocean (2000 m depth) resembled those at the surface with maximum intertropical concentrations. Analysis derived from OPE concentrations at the bottom of the photic zone and in the minimum oxygen layer suggested a complex dynamic biogeochemical cycling driven by transport, degradation, and redissolution of OPEs with depth. OPEs are persistent enough to reach all oceanic compartments, but a quantitative resolution of the sources, sinks, seasonality, and biogeochemical cycles will require future research.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"5585-5595"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12555","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale oceanic assessments are key for determining the persistence and long-range transport potential of organic pollutants, but there is a dearth of these for organophosphate esters (OPEs), widely used as flame retardants and plasticizers. This work reports the latitudinal distribution (42°N-70°S) and vertical profiles (from the surface to 2000 m depth) of OPEs in the Atlantic and Southern Oceans and explores their biogeochemical controls. The latitudinal gradient shows higher surface OPE concentrations near the equator than at higher latitudes, consistent with the prevailing oceanic and atmospheric circulation, and measured wet deposition events. At the deep chlorophyll maximum depth, there was an inverse correlation between the concentrations of the OPEs and phytoplankton biomass, with the lowest concentrations in the Southern Ocean, consistent with the role of the biological pump depleting the levels of the OPEs from the photic zone. OPE latitudinal trends in the deep ocean (2000 m depth) resembled those at the surface with maximum intertropical concentrations. Analysis derived from OPE concentrations at the bottom of the photic zone and in the minimum oxygen layer suggested a complex dynamic biogeochemical cycling driven by transport, degradation, and redissolution of OPEs with depth. OPEs are persistent enough to reach all oceanic compartments, but a quantitative resolution of the sources, sinks, seasonality, and biogeochemical cycles will require future research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信