Epigallocatechin -3- gallate mitigates diazinon neurotoxicity via suppression of pro-inflammatory genes and upregulation of antioxidant pathways.

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Charles Etang Onukak, Omowumi Moromoke Femi-Akinlosotu, Adedunsola Adewunmi Obasa, Oluwabusayo Racheal Folarin, Temitayo Olabisi Ajibade, Olumayowa Olawumi Igado, Oluwaseun Olarenwaju Esan, Taiwo Olaide Oyagbemi, Adewunmi Victoria Adeogun, Ademola Adetokunbo Oyagbemi, Olufunke Eunice Ola-Davies, Temidayo Olutayo Omobowale, James Olukayode Olopade, Oluwafemi Omoniyi Oguntibeju, Momoh Audu Yakubu
{"title":"Epigallocatechin -3- gallate mitigates diazinon neurotoxicity via suppression of pro-inflammatory genes and upregulation of antioxidant pathways.","authors":"Charles Etang Onukak, Omowumi Moromoke Femi-Akinlosotu, Adedunsola Adewunmi Obasa, Oluwabusayo Racheal Folarin, Temitayo Olabisi Ajibade, Olumayowa Olawumi Igado, Oluwaseun Olarenwaju Esan, Taiwo Olaide Oyagbemi, Adewunmi Victoria Adeogun, Ademola Adetokunbo Oyagbemi, Olufunke Eunice Ola-Davies, Temidayo Olutayo Omobowale, James Olukayode Olopade, Oluwafemi Omoniyi Oguntibeju, Momoh Audu Yakubu","doi":"10.1186/s12868-025-00943-x","DOIUrl":null,"url":null,"abstract":"<p><p>Diazinon is a commonly used organophosphate (OP) insecticide especially in developing countries for the control of insect pests, however, exposure to its toxic impact especially in humans and other non-target species remains an important public health concern. The study aimed to investigate the effect of epigallocatechin -3- gallate (EGCG), abundant in green tea plants on neurobehavioural, biochemical, and pathological changes in the brain of male Wistar rats following exposure to diazinon toxicity. Sixty adult male Wistar rats were acclimatized for seven days and subsequently randomly assigned into six treatment groups as follows: Group I: Control group (0.2 mL distilled water); Group II: Diazinon at 3 mg/kg (1% LD50); Group III: Diazinon (3 mg/kg) + EGCG (50 mg/kg, ~ 2% of LD50); Group IV: Diazinon (3 mg/kg) + EGCG (100 mg/kg, ~ 5% of LD50); Group V: EGCG (50 mg/kg) and Group VI: EGCG (100 mg/kg). All treatments were administered orally once daily for 14 days. Neurobehavioural studies, biomarkers of oxidative stress, histology, immunohistochemistry, and quantitative polymerase chain reaction (RT qPCR) were performed. Diazinon alone impaired recognition memory, increased oxidative stress markers and altered antioxidant defense in the brain. It upregulated TNF-α and IL-6 genes and repressed GPx 4 gene expressions. It was also associated with increased GFAP, Tau, and α-SN immunoreactivity. Microscopic examination revealed loss of Purkinje and hippocampal cells in brain. Co-treatment with EGCG however improved cognition, lowered oxidative stress markers, improved antioxidant status and suppressed TNF-α and IL-6. In conclusion, findings from this study demonstrated that EGCG offered protection against diazinon-induced neurotoxicity. Hence, natural sources of epigallocatechin -3- gallate such as fruits and vegetables could offer immense benefits by protecting against oxidative stress and inflammation in neurodegenerative disease conditions.Clinical trial number Not applicable.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"26 1","pages":"22"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-025-00943-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Diazinon is a commonly used organophosphate (OP) insecticide especially in developing countries for the control of insect pests, however, exposure to its toxic impact especially in humans and other non-target species remains an important public health concern. The study aimed to investigate the effect of epigallocatechin -3- gallate (EGCG), abundant in green tea plants on neurobehavioural, biochemical, and pathological changes in the brain of male Wistar rats following exposure to diazinon toxicity. Sixty adult male Wistar rats were acclimatized for seven days and subsequently randomly assigned into six treatment groups as follows: Group I: Control group (0.2 mL distilled water); Group II: Diazinon at 3 mg/kg (1% LD50); Group III: Diazinon (3 mg/kg) + EGCG (50 mg/kg, ~ 2% of LD50); Group IV: Diazinon (3 mg/kg) + EGCG (100 mg/kg, ~ 5% of LD50); Group V: EGCG (50 mg/kg) and Group VI: EGCG (100 mg/kg). All treatments were administered orally once daily for 14 days. Neurobehavioural studies, biomarkers of oxidative stress, histology, immunohistochemistry, and quantitative polymerase chain reaction (RT qPCR) were performed. Diazinon alone impaired recognition memory, increased oxidative stress markers and altered antioxidant defense in the brain. It upregulated TNF-α and IL-6 genes and repressed GPx 4 gene expressions. It was also associated with increased GFAP, Tau, and α-SN immunoreactivity. Microscopic examination revealed loss of Purkinje and hippocampal cells in brain. Co-treatment with EGCG however improved cognition, lowered oxidative stress markers, improved antioxidant status and suppressed TNF-α and IL-6. In conclusion, findings from this study demonstrated that EGCG offered protection against diazinon-induced neurotoxicity. Hence, natural sources of epigallocatechin -3- gallate such as fruits and vegetables could offer immense benefits by protecting against oxidative stress and inflammation in neurodegenerative disease conditions.Clinical trial number Not applicable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Neuroscience
BMC Neuroscience 医学-神经科学
CiteScore
3.90
自引率
0.00%
发文量
64
审稿时长
16 months
期刊介绍: BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信