Ultra-high temporal resolution 4D angiography using arterial spin labeling with subspace reconstruction

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Qijia Shen, Wenchuan Wu, Mark Chiew, Yang Ji, Joseph G. Woods, Thomas W. Okell
{"title":"Ultra-high temporal resolution 4D angiography using arterial spin labeling with subspace reconstruction","authors":"Qijia Shen,&nbsp;Wenchuan Wu,&nbsp;Mark Chiew,&nbsp;Yang Ji,&nbsp;Joseph G. Woods,&nbsp;Thomas W. Okell","doi":"10.1002/mrm.30407","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>To achieve ultra-high temporal resolution non-contrast 4D angiography with improved spatiotemporal fidelity.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Continuous data acquisition using 3D golden-angle sampling following an arterial spin labeling preparation allows for flexibly reconstructing 4D dynamic angiograms at arbitrary temporal resolutions. However, k-space data is often temporally “binned” before image reconstruction, negatively affecting spatiotemporal fidelity and limiting temporal resolution. In this work, a subspace was extracted by linearly compressing a dictionary constructed from simulated curves of an angiographic kinetic model. The subspace was used to represent and reconstruct the voxelwise signal timecourse at the same temporal resolution as the data acquisition without temporal binning. Physiological parameters were estimated from the resulting images using a Bayesian fitting approach. A group of eight healthy subjects were scanned and the in vivo results reconstructed by different methods were compared. Because of the difficulty of obtaining ground truth 4D angiograms with ultra-high temporal resolution, the in vivo results were cross-validated with numerical simulations.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The proposed method enables 4D time-resolved angiography with much higher temporal resolution (14.7 ms) than previously reported (˜50 ms) while maintaining high spatial resolution (1.1 mm isotropic). Blood flow dynamics were depicted in greater detail, thin vessel visibility was improved, and the estimated physiological parameters also exhibited more realistic spatial patterns with the proposed method.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Incorporating a subspace compressed kinetic model into the reconstruction of 4D ASL angiograms notably improved the temporal resolution and spatiotemporal fidelity, which was subsequently beneficial for accurate physiological modeling.</p>\n </section>\n </div>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":"93 5","pages":"1924-1941"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.30407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrm.30407","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To achieve ultra-high temporal resolution non-contrast 4D angiography with improved spatiotemporal fidelity.

Methods

Continuous data acquisition using 3D golden-angle sampling following an arterial spin labeling preparation allows for flexibly reconstructing 4D dynamic angiograms at arbitrary temporal resolutions. However, k-space data is often temporally “binned” before image reconstruction, negatively affecting spatiotemporal fidelity and limiting temporal resolution. In this work, a subspace was extracted by linearly compressing a dictionary constructed from simulated curves of an angiographic kinetic model. The subspace was used to represent and reconstruct the voxelwise signal timecourse at the same temporal resolution as the data acquisition without temporal binning. Physiological parameters were estimated from the resulting images using a Bayesian fitting approach. A group of eight healthy subjects were scanned and the in vivo results reconstructed by different methods were compared. Because of the difficulty of obtaining ground truth 4D angiograms with ultra-high temporal resolution, the in vivo results were cross-validated with numerical simulations.

Results

The proposed method enables 4D time-resolved angiography with much higher temporal resolution (14.7 ms) than previously reported (˜50 ms) while maintaining high spatial resolution (1.1 mm isotropic). Blood flow dynamics were depicted in greater detail, thin vessel visibility was improved, and the estimated physiological parameters also exhibited more realistic spatial patterns with the proposed method.

Conclusion

Incorporating a subspace compressed kinetic model into the reconstruction of 4D ASL angiograms notably improved the temporal resolution and spatiotemporal fidelity, which was subsequently beneficial for accurate physiological modeling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信