{"title":"PyQt5-powered frontend for advanced YOLOv8 vehicle detection in challenging backgrounds","authors":"Fucai Sun, Liping Du, Yantao Dai","doi":"10.1049/wss2.70001","DOIUrl":null,"url":null,"abstract":"<p>Object detection, as a key technology in computer vision, has been widely applied across various fields. However, traditional algorithms often need help with poor generalisation and low accuracy, limiting their performance in complex scenarios. With the advent of deep learning, neural networks leveraging large datasets have demonstrated remarkable improvements in generalisation and accuracy, significantly outperforming traditional methods. This study focuses on improving the YOLOv8 algorithm to address detection challenges in complex environments. The enhanced YOLOv8 model incorporates tailored modifications to its network structure, improving its feature extraction capabilities and detection efficiency. A custom vehicle dataset featuring diverse and challenging backgrounds was pre-processed and utilised for training, resulting in a robust vehicle detection model. The experimental results show that the improved YOLOv8 algorithm achieved a recall from 0.469 to 0.479 and [email protected] from 0.520 to 0.533, demonstrating significant performance gains. PyQt5-based graphical user interface was developed, providing a user-friendly platform for real-time detection and analysis. The interface allows users to input images or videos, view detection results, and adjust parameters dynamically, offering both functionality and convenience. This combination of algorithmic enhancement and intuitive interface design establishes a strong foundation for real-world applications and further advancements in multi-target detection and tracking.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Object detection, as a key technology in computer vision, has been widely applied across various fields. However, traditional algorithms often need help with poor generalisation and low accuracy, limiting their performance in complex scenarios. With the advent of deep learning, neural networks leveraging large datasets have demonstrated remarkable improvements in generalisation and accuracy, significantly outperforming traditional methods. This study focuses on improving the YOLOv8 algorithm to address detection challenges in complex environments. The enhanced YOLOv8 model incorporates tailored modifications to its network structure, improving its feature extraction capabilities and detection efficiency. A custom vehicle dataset featuring diverse and challenging backgrounds was pre-processed and utilised for training, resulting in a robust vehicle detection model. The experimental results show that the improved YOLOv8 algorithm achieved a recall from 0.469 to 0.479 and [email protected] from 0.520 to 0.533, demonstrating significant performance gains. PyQt5-based graphical user interface was developed, providing a user-friendly platform for real-time detection and analysis. The interface allows users to input images or videos, view detection results, and adjust parameters dynamically, offering both functionality and convenience. This combination of algorithmic enhancement and intuitive interface design establishes a strong foundation for real-world applications and further advancements in multi-target detection and tracking.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.