{"title":"On linearization and uniqueness of preduals","authors":"Karsten Kruse","doi":"10.1002/mana.202400355","DOIUrl":null,"url":null,"abstract":"<p>We study strong linearizations and the uniqueness of preduals of locally convex Hausdorff spaces of scalar-valued functions. Strong linearizations are special preduals. A locally convex Hausdorff space <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {F}(\\Omega)$</annotation>\n </semantics></math> of scalar-valued functions on a nonempty set <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> is said to admit a <i>strong linearization</i> if there are a locally convex Hausdorff space <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>, a map <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>:</mo>\n <mi>Ω</mi>\n <mo>→</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$\\delta: \\Omega \\rightarrow Y$</annotation>\n </semantics></math>, and a topological isomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>:</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msubsup>\n <mi>Y</mi>\n <mi>b</mi>\n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation>$T: \\mathcal {F}(\\Omega)\\rightarrow Y_{b}^{\\prime }$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>(</mo>\n <mi>f</mi>\n <mo>)</mo>\n <mo>∘</mo>\n <mi>δ</mi>\n <mo>=</mo>\n <mi>f</mi>\n </mrow>\n <annotation>$T(f)\\circ \\delta = f$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>∈</mo>\n <mi>F</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f\\in \\mathcal {F}(\\Omega)$</annotation>\n </semantics></math>. We give sufficient conditions that allow us to lift strong linearizations from the scalar-valued to the vector-valued case, covering many previous results on linearizations, and use them to characterize the bornological spaces <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {F}(\\Omega)$</annotation>\n </semantics></math> with (strongly) unique predual in certain classes of locally convex Hausdorff spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"955-975"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400355","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400355","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study strong linearizations and the uniqueness of preduals of locally convex Hausdorff spaces of scalar-valued functions. Strong linearizations are special preduals. A locally convex Hausdorff space of scalar-valued functions on a nonempty set is said to admit a strong linearization if there are a locally convex Hausdorff space , a map , and a topological isomorphism such that for all . We give sufficient conditions that allow us to lift strong linearizations from the scalar-valued to the vector-valued case, covering many previous results on linearizations, and use them to characterize the bornological spaces with (strongly) unique predual in certain classes of locally convex Hausdorff spaces.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index