Network-Scale Dynamics of Alluvial Cover in a Mixed Bedrock-Alluvial River

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Mel Oliveira Guirro, Rebecca Hodge, Fiona Clubb, Laura Turnbull
{"title":"Network-Scale Dynamics of Alluvial Cover in a Mixed Bedrock-Alluvial River","authors":"Mel Oliveira Guirro,&nbsp;Rebecca Hodge,&nbsp;Fiona Clubb,&nbsp;Laura Turnbull","doi":"10.1029/2024JF007968","DOIUrl":null,"url":null,"abstract":"<p>Limited understanding of how sediment cover varies spatially in mixed bedrock-alluvial river networks inhibits our comprehension of erosion processes in these systems. This study investigates the complex interactions between channel and sediment properties that control the extent, spatial distribution, and connectivity of alluvial cover in mixed bedrock-alluvial river networks. Employing a combination of field data, sediment transport modeling, and connectivity analysis, this study aims to understand the key drivers influencing sediment cover patterns at the network scale. Sediment transport simulations using the NetworkSedimentTransporter model explored how varying initial fluvial and channel parameters affect the steady-state alluvial cover across the River Carron network in the Scottish Highlands. The results demonstrate that increased initial sediment cover, increased sediment supply, and larger grains increased the extent and connectivity of alluvial sections, whereas deeper flow reduced them. In supply-limited conditions, the spatial distribution of alluvial cover is most sensitive to slope, while in transport-limited conditions, sediment supply and grain size become more critical. Even at high sediment supply rates, not all reaches achieved full alluviation, suggesting inherent limitations in sediment distribution. Additionally, channel slope was the most significant factor controlling the directional growth of alluvial sections. These findings contribute to the limited research on the controls of alluvial cover at the network scale, thereby improving our understanding of landscape evolution, river management, and habitat conservation of mixed bedrock-alluvial rivers.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007968","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007968","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Limited understanding of how sediment cover varies spatially in mixed bedrock-alluvial river networks inhibits our comprehension of erosion processes in these systems. This study investigates the complex interactions between channel and sediment properties that control the extent, spatial distribution, and connectivity of alluvial cover in mixed bedrock-alluvial river networks. Employing a combination of field data, sediment transport modeling, and connectivity analysis, this study aims to understand the key drivers influencing sediment cover patterns at the network scale. Sediment transport simulations using the NetworkSedimentTransporter model explored how varying initial fluvial and channel parameters affect the steady-state alluvial cover across the River Carron network in the Scottish Highlands. The results demonstrate that increased initial sediment cover, increased sediment supply, and larger grains increased the extent and connectivity of alluvial sections, whereas deeper flow reduced them. In supply-limited conditions, the spatial distribution of alluvial cover is most sensitive to slope, while in transport-limited conditions, sediment supply and grain size become more critical. Even at high sediment supply rates, not all reaches achieved full alluviation, suggesting inherent limitations in sediment distribution. Additionally, channel slope was the most significant factor controlling the directional growth of alluvial sections. These findings contribute to the limited research on the controls of alluvial cover at the network scale, thereby improving our understanding of landscape evolution, river management, and habitat conservation of mixed bedrock-alluvial rivers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信