Ergodic averages along sequences of slow growth

IF 1 2区 数学 Q1 MATHEMATICS
Kaitlyn Loyd, Sovanlal Mondal
{"title":"Ergodic averages along sequences of slow growth","authors":"Kaitlyn Loyd,&nbsp;Sovanlal Mondal","doi":"10.1112/jlms.70124","DOIUrl":null,"url":null,"abstract":"<p>We consider pointwise almost everywhere convergence of weighted ergodic averages along the sequence <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$ \\Omega (n)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$ \\Omega (n)$</annotation>\n </semantics></math> denotes the number of prime factors of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$ n$</annotation>\n </semantics></math> counted with multiplicities. It was previously shown that a pointwise ergodic theorem for <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> functions does not hold along <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$ \\Omega (n)$</annotation>\n </semantics></math>. We classify the strength of this divergence by proving a double-logarithmic pointwise ergodic theorem for <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^1$</annotation>\n </semantics></math> functions along <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$ \\Omega (n)$</annotation>\n </semantics></math>. This contrasts the behavior of Khintchine-type averages, for which, under any weaker form of averaging, there exists a bounded measurable function for which almost everywhere convergence fails. Moreover, we show that certain perturbations of increasing subpolynomial sequences fail to satisfy a pointwise ergodic theorem, yielding natural new examples of such sequences.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider pointwise almost everywhere convergence of weighted ergodic averages along the sequence Ω ( n ) $ \Omega (n)$ , where Ω ( n ) $ \Omega (n)$ denotes the number of prime factors of n $ n$ counted with multiplicities. It was previously shown that a pointwise ergodic theorem for L $L^\infty$ functions does not hold along Ω ( n ) $ \Omega (n)$ . We classify the strength of this divergence by proving a double-logarithmic pointwise ergodic theorem for L 1 $L^1$ functions along Ω ( n ) $ \Omega (n)$ . This contrasts the behavior of Khintchine-type averages, for which, under any weaker form of averaging, there exists a bounded measurable function for which almost everywhere convergence fails. Moreover, we show that certain perturbations of increasing subpolynomial sequences fail to satisfy a pointwise ergodic theorem, yielding natural new examples of such sequences.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信