Shift orbits for elementary representations of Kronecker quivers

IF 1 2区 数学 Q1 MATHEMATICS
Daniel Bissinger
{"title":"Shift orbits for elementary representations of Kronecker quivers","authors":"Daniel Bissinger","doi":"10.1112/jlms.70122","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>∈</mo>\n <msub>\n <mi>N</mi>\n <mrow>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$r \\in \\mathbb {N}_{\\geqslant 3}$</annotation>\n </semantics></math>. We denote by <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>r</mi>\n </msub>\n <annotation>$K_r$</annotation>\n </semantics></math> the wild <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-Kronecker quiver with <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> arrows <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>i</mi>\n </msub>\n <mo>:</mo>\n <mn>1</mn>\n <mo>⟶</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\gamma _i \\colon 1 \\longrightarrow 2$</annotation>\n </semantics></math> and consider the action of the group <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>r</mi>\n </msub>\n <mo>⊆</mo>\n <mo>Aut</mo>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$G_r \\subseteq \\operatorname{Aut}(\\mathbb {Z}^2)$</annotation>\n </semantics></math> generated by <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>:</mo>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <mo>⟶</mo>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <mo>,</mo>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>↦</mo>\n <mrow>\n <mo>(</mo>\n <mi>y</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\delta \\colon \\mathbb {Z}^2 \\longrightarrow \\mathbb {Z}^2, (x,y) \\mapsto (y,x)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mi>r</mi>\n </msub>\n <mo>:</mo>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <mo>⟶</mo>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n <mo>,</mo>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>↦</mo>\n <mrow>\n <mo>(</mo>\n <mi>r</mi>\n <mi>x</mi>\n <mo>−</mo>\n <mi>y</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\sigma _{r} \\colon \\mathbb {Z}^2 \\longrightarrow \\mathbb {Z}^2, (x,y) \\mapsto (rx-y,x)$</annotation>\n </semantics></math> on the set of regular dimension vectors\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let r N 3 $r \in \mathbb {N}_{\geqslant 3}$ . We denote by K r $K_r$ the wild r $r$ -Kronecker quiver with r $r$ arrows γ i : 1 2 $\gamma _i \colon 1 \longrightarrow 2$ and consider the action of the group G r Aut ( Z 2 ) $G_r \subseteq \operatorname{Aut}(\mathbb {Z}^2)$ generated by δ : Z 2 Z 2 , ( x , y ) ( y , x ) $\delta \colon \mathbb {Z}^2 \longrightarrow \mathbb {Z}^2, (x,y) \mapsto (y,x)$ and σ r : Z 2 Z 2 , ( x , y ) ( r x y , x ) $\sigma _{r} \colon \mathbb {Z}^2 \longrightarrow \mathbb {Z}^2, (x,y) \mapsto (rx-y,x)$ on the set of regular dimension vectors

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信