Variational stabilization of degenerate p $p$ -elasticae

IF 1 2区 数学 Q1 MATHEMATICS
Tatsuya Miura, Kensuke Yoshizawa
{"title":"Variational stabilization of degenerate \n \n p\n $p$\n -elasticae","authors":"Tatsuya Miura,&nbsp;Kensuke Yoshizawa","doi":"10.1112/jlms.70096","DOIUrl":null,"url":null,"abstract":"<p>A new stabilization phenomenon induced by degenerate diffusion is discovered in the context of pinned planar <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-elasticae. It was known that in the nondegenerate regime <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$p\\in (1,2]$</annotation>\n </semantics></math>, including the classical case of Euler's elastica, there are no local minimizers other than unique global minimizers. Here we prove that, in stark contrast, in the degenerate regime <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p\\in (2,\\infty)$</annotation>\n </semantics></math> there emerge uncountably many local minimizers with diverging energy.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70096","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new stabilization phenomenon induced by degenerate diffusion is discovered in the context of pinned planar p $p$ -elasticae. It was known that in the nondegenerate regime p ( 1 , 2 ] $p\in (1,2]$ , including the classical case of Euler's elastica, there are no local minimizers other than unique global minimizers. Here we prove that, in stark contrast, in the degenerate regime p ( 2 , ) $p\in (2,\infty)$ there emerge uncountably many local minimizers with diverging energy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信